Datasets:
File size: 3,260 Bytes
8ecb6f4 ad9d68c 8ecb6f4 ad9d68c 323690b ad9d68c f19ab39 ad9d68c f19ab39 ad9d68c 87dc8cb ad9d68c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
task_categories:
- text-generation
- text2text-generation
- translation
language:
- en
tags:
- code
pretty_name: BabelCode Transcoder
size_categories:
- 1K<n<10K
---
# Dataset Card for BabelCode Transcoder
## Dataset Description
- **Repository:** [GitHub Repository](https://github.com/google-research/babelcode)
- **Paper:** [Measuring The Impact Of Programming Language Distribution](https://arxiv.org/abs/2302.01973)
### How To Use This Dataset
To quickly evaluate BC-Transcoder predictions, save the `qid` and `language` keys along with the postprocessed prediction code in a JSON lines file. Then follow the install instructions for [BabelCode](https://github.com/google-research/babelcode), and you can evaluate your predictions.
### Dataset Summary
The [Transcoder](https://github.com/facebookresearch/CodeGen) dataset in BabelCode format. Currently supports translation from C++ and Python.
### Supported Tasks and Leaderboards
### Languages
BC-Transcoder supports:
* C++
* C#
* Dart
* Go
* Haskell
* Java
* Javascript
* Julia
* Kotlin
* Lua
* PHP
* Python
* R
* Rust
* Scala
* TypeScript
## Dataset Structure
```python
>>> from datasets import load_dataset
>>> load_dataset("gabeorlanski/bc-transcoder")
DatasetDict({
test: Dataset({
features: ['qid', 'title', 'language', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'source_py', 'source_cpp'],
num_rows: 8384
})
})
```
### Data Fields
- `qid`: The question ID used for running tests.
- `title`: The title of the question.
- `language`: The programming language of the example.
- `signature`: The signature for the problem.
- `arguments`: The arguments of the problem.
- `entry_fn_name`: The function's name to use an entry point.
- `entry_cls_name`: The class name to use an entry point.
- `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction.
- `source_py`: The source solution in Python.
- `source_cpp`: The source in C++.
## Dataset Creation
See section 2 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated.
For information on the original curation of the Transcoder Dataset, please see [Unsupervised Translation of Programming Languages](https://arxiv.org/pdf/2006.03511.pdf) by Roziere et. al.
### Dataset Curators
Google Research
### Licensing Information
CC-BY-4.0
### Citation Information
```
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
@article{roziere2020unsupervised,
title={Unsupervised translation of programming languages},
author={Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample, Guillaume},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
``` |