File size: 4,472 Bytes
e8727a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: cc0-1.0
language:
- ab
- af
- am
- ar
- as
- ast
- az
- ba
- bas
- be
- bg
- bn
- br
- ca
- ckb
- cnh
- cs
- cv
- cy
- da
- de
- dv
- dyu
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- gl
- gn
- ha
- he
- hi
- hsb
- hu
- ia
- id
- ig
- is
- it
- ja
- ka
- kab
- kk
- kmr
- ko
- ky
- lg
- lo
- lt
- lv
- mdf
- mhr
- mk
- ml
- mn
- mr
- mrj
- mt
- myv
- nl
- oc
- or
- pl
- ps
- pt
- quy
- ro
- ru
- rw
- sah
- sat
- sc
- sk
- skr
- sl
- sq
- sr
- sw
- ta
- th
- ti
- tig
- tk
- tok
- tr
- tt
- tw
- ug
- uk
- ur
- uz
- vi
- vot
- yue
- za
- zgh
- zh
- yo
task_categories:
- automatic-speech-recognition
pretty_name: Common Voice Corpus 17.0
size_categories:
- 100B<n<1T
tags:
- mozilla
- foundation
---
# Dataset Card for Common Voice Corpus 17.0

<!-- Provide a quick summary of the dataset. -->

This dataset is an unofficial version of the Mozilla Common Voice Corpus 17. It was downloaded and converted from the project's website https://commonvoice.mozilla.org/.


## Languages
```
Abkhaz, Albanian, Amharic, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dioula, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Icelandic, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Korean, Kurmanji Kurdish, Kyrgyz, Lao, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Occitan, Odia, Pashto, Persian, Polish, Portuguese, Punjabi, Quechua Chanka, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamazight, Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Turkmen, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh, Yoruba
```

## How to use
The datasets library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the load_dataset function.

For example, to download the Portuguese config, simply specify the corresponding language config name (i.e., "pt" for Portuguese):
```
from datasets import load_dataset

cv_17 = load_dataset("fsicoli/common_voice_17_0", "pt", split="train")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a streaming=True argument to the load_dataset function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.

```
from datasets import load_dataset

cv_17 = load_dataset("fsicoli/common_voice_17_0", "pt", split="train", streaming=True)

print(next(iter(cv_17)))
```

Bonus: create a PyTorch dataloader directly with your own datasets (local/streamed).

### Local
```
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler

cv_17 = load_dataset("fsicoli/common_voice_17_0", "pt", split="train")
batch_sampler = BatchSampler(RandomSampler(cv_17), batch_size=32, drop_last=False)
dataloader = DataLoader(cv_17, batch_sampler=batch_sampler)
```

### Streaming
```
from datasets import load_dataset
from torch.utils.data import DataLoader

cv_17 = load_dataset("fsicoli/common_voice_17_0", "pt", split="train")
dataloader = DataLoader(cv_17, batch_size=32)
```

To find out more about loading and preparing audio datasets, head over to hf.co/blog/audio-datasets.



### Dataset Structure
Data Instances
A typical data point comprises the path to the audio file and its sentence. Additional fields include accent, age, client_id, up_votes, down_votes, gender, locale and segment.

### Licensing Information
Public Domain, CC-0


### Citation Information
```
@inproceedings{commonvoice:2020,
  author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
  title = {Common Voice: A Massively-Multilingual Speech Corpus},
  booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
  pages = {4211--4215},
  year = 2020
}
```
---