aarontung commited on
Commit
52f0d67
·
1 Parent(s): cbd6c37

Update help code

Browse files
Files changed (2) hide show
  1. README.md +2 -4
  2. helpercode.ipynb +4 -188
README.md CHANGED
@@ -33,7 +33,7 @@ dataset_info:
33
 
34
  - **Homepage:** https://www.frodobots.com/
35
  - **Hours of tele-operation:** ~1,000 Hrs
36
- - **Dataset Size:** 900+ GB
37
  - **Point of Contact:** michael.cho@frodobots.com
38
 
39
 
@@ -150,8 +150,6 @@ The team behind FrodoBots is focused on building an open-world video gaming expe
150
  By sharing this dataset with the research community, we hope to see new innovations that can be tested (via our SDK) directly on our fleet of FrodoBots, and then ultimately deployed back into our production environment in order to create a more fun and safer game.
151
 
152
  ## **Download**
153
- > **_We are releasing the dataset progressively as we complete the video redaction tasks in the coming weeks. We expect the entire dataset to be made fully available by Oct 2023._**
154
-
155
  Download FrodoBots dataset using the link in this [csv file](https://frodobots-1k.s3.ap-southeast-1.amazonaws.com/frodobots-1k_dataset.csv).
156
 
157
  ## **Helper code**
@@ -165,4 +163,4 @@ BlurIt is a leading solution for data anonymization. A state-of-the-art AI solut
165
 
166
  ## **Contributions**
167
 
168
- The team at FrodoBots Lab created this dataset, including [Michael Cho](https://twitter.com/micoolcho), Sam Cho, Aaron Tung, Niresh Dravin & Jiamin Ho.
 
33
 
34
  - **Homepage:** https://www.frodobots.com/
35
  - **Hours of tele-operation:** ~1,000 Hrs
36
+ - **Dataset Size:** 700+ GB
37
  - **Point of Contact:** michael.cho@frodobots.com
38
 
39
 
 
150
  By sharing this dataset with the research community, we hope to see new innovations that can be tested (via our SDK) directly on our fleet of FrodoBots, and then ultimately deployed back into our production environment in order to create a more fun and safer game.
151
 
152
  ## **Download**
 
 
153
  Download FrodoBots dataset using the link in this [csv file](https://frodobots-1k.s3.ap-southeast-1.amazonaws.com/frodobots-1k_dataset.csv).
154
 
155
  ## **Helper code**
 
163
 
164
  ## **Contributions**
165
 
166
+ The team at FrodoBots Lab created this dataset, including [Michael Cho](https://twitter.com/micoolcho), Sam Cho, Aaron Tung, Niresh Dravin & Jiamin Ho.
helpercode.ipynb CHANGED
@@ -11,7 +11,9 @@
11
  {
12
  "cell_type": "markdown",
13
  "id": "8241ff80-87a2-4326-938f-94c7e072420e",
14
- "metadata": {},
 
 
15
  "source": [
16
  "## Introduction\n",
17
  "FrodoBots dataset classifies data according to the robot id and session id. Whenever the driver drives a robot, the system will generate a session id to record the data. The data content is as follows\n",
@@ -30,10 +32,8 @@
30
  "- rear_`session_id`.csv\n",
31
  "6. **Microhone**\n",
32
  "- mic_`session_id`.mp4\n",
33
- "- mic_`session_id`.csv\n",
34
  "7. **Speaker**\n",
35
  "- spk_`session_id`_`timestamp`.mp4\n",
36
- "- spk_`session_id`_`timestamp`.csv\n",
37
  "\n",
38
  "Before executing this program, you can download the [sample](https://frodobots-1k.s3.ap-southeast-1.amazonaws.com/frodobots-1k_20230907_getting-started.zip) first. And specify the robot id and session id to be processed."
39
  ]
@@ -835,190 +835,6 @@
835
  "front_camera_df = pd.read_csv(dataset_dir + '/' + bot_id + '/' + session_id + '/rear_' + session_id + '.csv')\n",
836
  "front_camera_df.head()"
837
  ]
838
- },
839
- {
840
- "cell_type": "markdown",
841
- "id": "3cde5990-5ad5-42d6-871f-9a0a32686cad",
842
- "metadata": {},
843
- "source": [
844
- "### Microphone audio"
845
- ]
846
- },
847
- {
848
- "cell_type": "code",
849
- "execution_count": 12,
850
- "id": "4f0d3b6e-f8ec-4983-a4f1-543d1e837a58",
851
- "metadata": {},
852
- "outputs": [
853
- {
854
- "data": {
855
- "text/html": [
856
- "<div>\n",
857
- "<style scoped>\n",
858
- " .dataframe tbody tr th:only-of-type {\n",
859
- " vertical-align: middle;\n",
860
- " }\n",
861
- "\n",
862
- " .dataframe tbody tr th {\n",
863
- " vertical-align: top;\n",
864
- " }\n",
865
- "\n",
866
- " .dataframe thead th {\n",
867
- " text-align: right;\n",
868
- " }\n",
869
- "</style>\n",
870
- "<table border=\"1\" class=\"dataframe\">\n",
871
- " <thead>\n",
872
- " <tr style=\"text-align: right;\">\n",
873
- " <th></th>\n",
874
- " <th>packet_id</th>\n",
875
- " <th>timestamp</th>\n",
876
- " </tr>\n",
877
- " </thead>\n",
878
- " <tbody>\n",
879
- " <tr>\n",
880
- " <th>0</th>\n",
881
- " <td>1</td>\n",
882
- " <td>1.684762e+09</td>\n",
883
- " </tr>\n",
884
- " <tr>\n",
885
- " <th>1</th>\n",
886
- " <td>2</td>\n",
887
- " <td>1.684762e+09</td>\n",
888
- " </tr>\n",
889
- " <tr>\n",
890
- " <th>2</th>\n",
891
- " <td>3</td>\n",
892
- " <td>1.684762e+09</td>\n",
893
- " </tr>\n",
894
- " <tr>\n",
895
- " <th>3</th>\n",
896
- " <td>4</td>\n",
897
- " <td>1.684762e+09</td>\n",
898
- " </tr>\n",
899
- " <tr>\n",
900
- " <th>4</th>\n",
901
- " <td>5</td>\n",
902
- " <td>1.684762e+09</td>\n",
903
- " </tr>\n",
904
- " </tbody>\n",
905
- "</table>\n",
906
- "</div>"
907
- ],
908
- "text/plain": [
909
- " packet_id timestamp\n",
910
- "0 1 1.684762e+09\n",
911
- "1 2 1.684762e+09\n",
912
- "2 3 1.684762e+09\n",
913
- "3 4 1.684762e+09\n",
914
- "4 5 1.684762e+09"
915
- ]
916
- },
917
- "execution_count": 12,
918
- "metadata": {},
919
- "output_type": "execute_result"
920
- }
921
- ],
922
- "source": [
923
- "mic_df = pd.read_csv(dataset_dir + '/' + bot_id + '/' + session_id + '/mic_' + session_id + '.csv')\n",
924
- "mic_df.head()"
925
- ]
926
- },
927
- {
928
- "cell_type": "markdown",
929
- "id": "79158bba-e2d3-49d6-ba1d-b7c36ec11550",
930
- "metadata": {},
931
- "source": [
932
- "### Speaker audio"
933
- ]
934
- },
935
- {
936
- "cell_type": "code",
937
- "execution_count": 13,
938
- "id": "a4213899-c0ed-4a7c-b7c0-42c948611c5e",
939
- "metadata": {},
940
- "outputs": [
941
- {
942
- "data": {
943
- "text/html": [
944
- "<div>\n",
945
- "<style scoped>\n",
946
- " .dataframe tbody tr th:only-of-type {\n",
947
- " vertical-align: middle;\n",
948
- " }\n",
949
- "\n",
950
- " .dataframe tbody tr th {\n",
951
- " vertical-align: top;\n",
952
- " }\n",
953
- "\n",
954
- " .dataframe thead th {\n",
955
- " text-align: right;\n",
956
- " }\n",
957
- "</style>\n",
958
- "<table border=\"1\" class=\"dataframe\">\n",
959
- " <thead>\n",
960
- " <tr style=\"text-align: right;\">\n",
961
- " <th></th>\n",
962
- " <th>packet_id</th>\n",
963
- " <th>timestamp</th>\n",
964
- " </tr>\n",
965
- " </thead>\n",
966
- " <tbody>\n",
967
- " <tr>\n",
968
- " <th>0</th>\n",
969
- " <td>1</td>\n",
970
- " <td>1.684762e+09</td>\n",
971
- " </tr>\n",
972
- " <tr>\n",
973
- " <th>1</th>\n",
974
- " <td>2</td>\n",
975
- " <td>1.684762e+09</td>\n",
976
- " </tr>\n",
977
- " <tr>\n",
978
- " <th>2</th>\n",
979
- " <td>3</td>\n",
980
- " <td>1.684762e+09</td>\n",
981
- " </tr>\n",
982
- " <tr>\n",
983
- " <th>3</th>\n",
984
- " <td>4</td>\n",
985
- " <td>1.684762e+09</td>\n",
986
- " </tr>\n",
987
- " <tr>\n",
988
- " <th>4</th>\n",
989
- " <td>5</td>\n",
990
- " <td>1.684762e+09</td>\n",
991
- " </tr>\n",
992
- " </tbody>\n",
993
- "</table>\n",
994
- "</div>"
995
- ],
996
- "text/plain": [
997
- " packet_id timestamp\n",
998
- "0 1 1.684762e+09\n",
999
- "1 2 1.684762e+09\n",
1000
- "2 3 1.684762e+09\n",
1001
- "3 4 1.684762e+09\n",
1002
- "4 5 1.684762e+09"
1003
- ]
1004
- },
1005
- "execution_count": 13,
1006
- "metadata": {},
1007
- "output_type": "execute_result"
1008
- }
1009
- ],
1010
- "source": [
1011
- "spk_df = pd.read_csv(dataset_dir + '/' + bot_id + '/' + session_id + '/spk_' + session_id + '_1684761920.csv')\n",
1012
- "spk_df.head()"
1013
- ]
1014
- },
1015
- {
1016
- "cell_type": "code",
1017
- "execution_count": null,
1018
- "id": "26389e72-c97b-4fad-bd0f-8362f6f5ed3d",
1019
- "metadata": {},
1020
- "outputs": [],
1021
- "source": []
1022
  }
1023
  ],
1024
  "metadata": {
@@ -1037,7 +853,7 @@
1037
  "name": "python",
1038
  "nbconvert_exporter": "python",
1039
  "pygments_lexer": "ipython3",
1040
- "version": "3.8.0"
1041
  }
1042
  },
1043
  "nbformat": 4,
 
11
  {
12
  "cell_type": "markdown",
13
  "id": "8241ff80-87a2-4326-938f-94c7e072420e",
14
+ "metadata": {
15
+ "jp-MarkdownHeadingCollapsed": true
16
+ },
17
  "source": [
18
  "## Introduction\n",
19
  "FrodoBots dataset classifies data according to the robot id and session id. Whenever the driver drives a robot, the system will generate a session id to record the data. The data content is as follows\n",
 
32
  "- rear_`session_id`.csv\n",
33
  "6. **Microhone**\n",
34
  "- mic_`session_id`.mp4\n",
 
35
  "7. **Speaker**\n",
36
  "- spk_`session_id`_`timestamp`.mp4\n",
 
37
  "\n",
38
  "Before executing this program, you can download the [sample](https://frodobots-1k.s3.ap-southeast-1.amazonaws.com/frodobots-1k_20230907_getting-started.zip) first. And specify the robot id and session id to be processed."
39
  ]
 
835
  "front_camera_df = pd.read_csv(dataset_dir + '/' + bot_id + '/' + session_id + '/rear_' + session_id + '.csv')\n",
836
  "front_camera_df.head()"
837
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
838
  }
839
  ],
840
  "metadata": {
 
853
  "name": "python",
854
  "nbconvert_exporter": "python",
855
  "pygments_lexer": "ipython3",
856
+ "version": "3.11.2"
857
  }
858
  },
859
  "nbformat": 4,