Datasets:
File size: 4,285 Bytes
52861f0 d66ea15 52861f0 44d0482 52861f0 44d0482 52861f0 44d0482 52861f0 44d0482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Copyright (C) 2022, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
"""Imagenette dataset."""
import os
import json
import datasets
_HOMEPAGE = "https://github.com/fastai/imagenette"
_LICENSE = "Apache License 2.0"
_CITATION = """\
@software{Howard_Imagenette_2019,
title={Imagenette: A smaller subset of 10 easily classified classes from Imagenet},
author={Jeremy Howard},
year={2019},
month={March},
publisher = {GitHub},
url = {https://github.com/fastai/imagenette}
}
"""
_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from Imagenet
(tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute).
"""
_LABEL_MAP = [
'n01440764',
'n02102040',
'n02979186',
'n03000684',
'n03028079',
'n03394916',
'n03417042',
'n03425413',
'n03445777',
'n03888257',
]
class OpenFireConfig(datasets.BuilderConfig):
"""BuilderConfig for OpenFire."""
def __init__(self, data_url, **kwargs):
"""BuilderConfig for OpenFire.
Args:
data_url: `string`, url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(OpenFireConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_url = data_url
class OpenFire(datasets.GeneratorBasedBuilder):
"""OpenFire dataset."""
BUILDER_CONFIGS = [
OpenFireConfig(
name="full_size",
description="All images are in their original size.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz",
),
OpenFireConfig(
name="320px",
description="All images were resized on their shortest side to 320 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz",
),
OpenFireConfig(
name="160px",
description="All images were resized on their shortest side to 160 pixels.",
data_url="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(
names=[
"tench",
"English springer",
"cassette player",
"chain saw",
"church",
"French horn",
"garbage truck",
"gas pump",
"golf ball",
"parachute",
]
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
_path = dl_manager.download_and_extract(self.config.data_url)
local_extracted_archive = os.path.join(_path, self.config.data_url.rpartition("/")[-1].split('.')[0])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split_folder": os.path.join(local_extracted_archive, "train"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split_folder": os.path.join(local_extracted_archive, "val"),
},
),
]
def _generate_examples(self, split_folder):
idx = 0
for class_idx, class_folder in enumerate(_LABEL_MAP):
for path in os.listdir(os.path.join(split_folder, class_folder)):
yield idx, {"image": os.path.join(split_folder, class_folder, path), "label": class_idx}
idx += 1
|