File size: 6,985 Bytes
e7528ab 85ed96d cfc4d5b 402e77a 85ed96d cfc4d5b e7528ab c50d71f cb6e9a8 c50d71f e7528ab cb6e9a8 e7528ab 07de18f e7528ab 1f2dad7 e7528ab 4081311 e7528ab 278460a e7528ab 4081311 e7528ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
license: apache-2.0
configs:
- config_name: places
data_files: release/dt=2025-01-10/places/parquet/*.parquet
default: true
- config_name: categories
data_files: release/dt=2025-01-10/categories/parquet/*.parquet
---
# Access FSQ OS Places
With Foursquare’s Open Source Places, you can access free data to accelerate geospatial innovation and insights. View the [Places OS Data Schemas](https://docs.foursquare.com/data-products/docs/places-os-data-schema) for a full list of available attributes.
## Prerequisites
In order to access Foursquare's Open Source Places data, it is recommended to use Spark. Here is how to load the Places data in Spark from Hugging Face.
- For Spark 3, you can use the `read_parquet` helper function from the [HF Spark documentation](https://huggingface.co/docs/hub/datasets-spark). It provides an easy API to load a Spark Dataframe from Hugging Face, without having to download the full dataset locally:
```python
places = read_parquet("hf://datasets/foursquare/fsq-os-places/release/dt=2025-01-10/places/parquet/*.parquet")
```
- For Spark 4, there will be an official Hugging Face Spark data source available.
Alternatively you can download the following files to your local disk or cluster:
- Parquet Files:
- **Places** - [release/dt=2025-01-10/places/parquet](https://huggingface.co/datasets/foursquare/fsq-os-places/tree/main/release/dt%3D2025-01-10/places/parquet)
- **Categories** - [release/dt=2025-01-10/categories/parquet](https://huggingface.co/datasets/foursquare/fsq-os-places/tree/main/release/dt%3D2025-01-10/categories/parquet)
Hugging Face provides the following [download options](https://huggingface.co/docs/hub/datasets-downloading).
## Example Queries
The following are examples on how to query FSQ Open Source Places using Athena and Spark:
- Filter [Categories](https://docs.foursquare.com/data-products/docs/categories#places-open-source--propremium-flat-file) by the parent level
- Filter out [non-commercial venues](#non-commercial-categories-table)
- Find open and recently active POI
### Filter by Parent Level Category
**SparkSQL**
```sql SparkSQL
WITH places_exploded_categories AS (
-- Unnest categories array
SELECT fsq_place_id,
name,
explode(fsq_category_ids) as fsq_category_id
FROM places
),
distinct_places AS (
SELECT
DISTINCT(fsq_place_id) -- Get distinct ids to reduce duplicates from explode function
FROM places_exploded_categories p
JOIN categories c -- Join to categories to filter on Level 2 Category
ON p.fsq_category_id = c.category_id
WHERE c.level2_category_id = '4d4b7105d754a06374d81259' -- Restaurants
)
SELECT * FROM places
WHERE fsq_place_id IN (SELECT fsq_place_id FROM distinct_places)
```
### Filter out Non-Commercial Categories
**SparkSQL**
```sql SparkSQL
SELECT * FROM places
WHERE arrays_overlap(fsq_category_ids, array('4bf58dd8d48988d1f0931735', -- Airport Gate
'62d587aeda6648532de2b88c', -- Beer Festival
'4bf58dd8d48988d12b951735', -- Bus Line
'52f2ab2ebcbc57f1066b8b3b', -- Christmas Market
'50aa9e094b90af0d42d5de0d', -- City
'5267e4d9e4b0ec79466e48c6', -- Conference
'5267e4d9e4b0ec79466e48c9', -- Convention
'530e33ccbcbc57f1066bbff7', -- Country
'5345731ebcbc57f1066c39b2', -- County
'63be6904847c3692a84b9bb7', -- Entertainment Event
'4d4b7105d754a06373d81259', -- Event
'5267e4d9e4b0ec79466e48c7', -- Festival
'4bf58dd8d48988d132951735', -- Hotel Pool
'52f2ab2ebcbc57f1066b8b4c', -- Intersection
'50aaa4314b90af0d42d5de10', -- Island
'58daa1558bbb0b01f18ec1fa', -- Line
'63be6904847c3692a84b9bb8', -- Marketplace
'4f2a23984b9023bd5841ed2c', -- Moving Target
'5267e4d9e4b0ec79466e48d1', -- Music Festival
'4f2a25ac4b909258e854f55f', -- Neighborhood
'5267e4d9e4b0ec79466e48c8', -- Other Event
'52741d85e4b0d5d1e3c6a6d9', -- Parade
'4bf58dd8d48988d1f7931735', -- Plane
'4f4531504b9074f6e4fb0102', -- Platform
'4cae28ecbf23941eb1190695', -- Polling Place
'4bf58dd8d48988d1f9931735', -- Road
'5bae9231bedf3950379f89c5', -- Sporting Event
'530e33ccbcbc57f1066bbff8', -- State
'530e33ccbcbc57f1066bbfe4', -- States and Municipalities
'52f2ab2ebcbc57f1066b8b54', -- Stoop Sale
'5267e4d8e4b0ec79466e48c5', -- Street Fair
'53e0feef498e5aac066fd8a9', -- Street Food Gathering
'4bf58dd8d48988d130951735', -- Taxi
'530e33ccbcbc57f1066bbff3', -- Town
'5bae9231bedf3950379f89c3', -- Trade Fair
'4bf58dd8d48988d12a951735', -- Train
'52e81612bcbc57f1066b7a24', -- Tree
'530e33ccbcbc57f1066bbff9', -- Village
)) = false
```
### Find Open and Recently Active POI
**SparkSQL**
```sql SparkSQL
SELECT * FROM places p
WHERE p.date_closed IS NULL
AND p.date_refreshed >= DATE_SUB(current_date(), 365);
```
## Appendix
### Non-Commercial Categories Table
| Category Name | Category ID |
| :------------------------ | :----------------------- |
| Airport Gate | 4bf58dd8d48988d1f0931735 |
| Beer Festival | 62d587aeda6648532de2b88c |
| Bus Line | 4bf58dd8d48988d12b951735 |
| Christmas Market | 52f2ab2ebcbc57f1066b8b3b |
| City | 50aa9e094b90af0d42d5de0d |
| Conference | 5267e4d9e4b0ec79466e48c6 |
| Convention | 5267e4d9e4b0ec79466e48c9 |
| Country | 530e33ccbcbc57f1066bbff7 |
| County | 5345731ebcbc57f1066c39b2 |
| Entertainment Event | 63be6904847c3692a84b9bb7 |
| Event | 4d4b7105d754a06373d81259 |
| Festival | 5267e4d9e4b0ec79466e48c7 |
| Hotel Pool | 4bf58dd8d48988d132951735 |
| Intersection | 52f2ab2ebcbc57f1066b8b4c |
| Island | 50aaa4314b90af0d42d5de10 |
| Line | 58daa1558bbb0b01f18ec1fa |
| Marketplace | 63be6904847c3692a84b9bb8 |
| Moving Target | 4f2a23984b9023bd5841ed2c |
| Music Festival | 5267e4d9e4b0ec79466e48d1 |
| Neighborhood | 4f2a25ac4b909258e854f55f |
| Other Event | 5267e4d9e4b0ec79466e48c8 |
| Parade | 52741d85e4b0d5d1e3c6a6d9 |
| Plane | 4bf58dd8d48988d1f7931735 |
| Platform | 4f4531504b9074f6e4fb0102 |
| Polling Place | 4cae28ecbf23941eb1190695 |
| Road | 4bf58dd8d48988d1f9931735 |
| State | 530e33ccbcbc57f1066bbff8 |
| States and Municipalities | 530e33ccbcbc57f1066bbfe4 |
| Stopp Sale | 52f2ab2ebcbc57f1066b8b54 |
| Street Fair | 5267e4d8e4b0ec79466e48c5 |
| Street Food Gathering | 53e0feef498e5aac066fd8a9 |
| Taxi | 4bf58dd8d48988d130951735 |
| Town | 530e33ccbcbc57f1066bbff3 |
| Trade Fair | 5bae9231bedf3950379f89c3 |
| Train | 4bf58dd8d48988d12a951735 |
| Tree | 52e81612bcbc57f1066b7a24 |
| Village | 530e33ccbcbc57f1066bbff9 |
|