File size: 9,582 Bytes
d617661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d835f
 
d617661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52783d2
d617661
 
30d835f
 
 
3da0754
 
30d835f
 
bafe1b7
30d835f
 
bafe1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d835f
d617661
52783d2
d617661
 
 
 
 
 
bafe1b7
 
 
d617661
 
 
30d835f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d617661
 
 
 
 
 
 
 
 
 
 
 
 
 
52783d2
 
 
bafe1b7
52783d2
bafe1b7
52783d2
d617661
52783d2
 
d617661
 
 
 
30d835f
d617661
 
 
 
30d835f
 
52783d2
30d835f
 
 
 
bafe1b7
 
 
 
 
 
 
 
 
 
 
 
52783d2
 
 
30d835f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""German Common Crawl"""

from __future__ import absolute_import, division, print_function
import datasets
import gzip
from ast import literal_eval


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{wenzek2020ccnet,
  title={CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data},
  author={Wenzek, Guillaume and Lachaux, Marie-Anne and Conneau, Alexis and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Joulin, Armand and Grave, {\'E}douard},
  booktitle={Proceedings of The 12th Language Resources and Evaluation Conference},
  pages={4003--4012},
  year={2020}
}
"""

_DESCRIPTION = """\
German Only Extract from Common Crawl

This Dataset is for pretraining a German Language Model (Unsupervised) or tune a Multilingual Model specifically to German
"""

REPO_URL = "https://huggingface.co/datasets/flax-community/german_common_crawl/resolve/main/"

_URL_FIRST = [REPO_URL + file_name for file_name in [
    "de_head_0000_2015-48.txt.gz",
#    "dummy.txt.gz",
]]

#TODO convert & upload all those files correctly
_URL_HEAD = [REPO_URL + file_name for file_name in [
    "de_head_0000_2015-48.txt.gz",
    "de_head_0000_2016-18.txt.gz",
    "de_head_0000_2016-44.txt.gz",
    "de_head_0000_2017-13.txt.gz",
    "de_head_0000_2017-30.txt.gz",
    "de_head_0000_2017-39.txt.gz",
    "de_head_0000_2017-51.txt.gz",
    "de_head_0000_2018-09.txt.gz",
    "de_head_0000_2018-17.txt.gz",
    "de_head_0000_2018-30.txt.gz",
    "de_head_0000_2018-39.txt.gz",
    "de_head_0000_2018-51.txt.gz",
    "de_head_0000_2019-18.txt.gz",
    "de_head_0000_2019-30.txt.gz",
    "de_head_0000_2019-47.txt.gz",
    "de_head_0000_2020-10.txt.gz",
    "de_head_0001_2016-44.txt.gz",
    "de_head_0001_2017-13.txt.gz",
    "de_head_0001_2017-30.txt.gz",
    "de_head_0001_2017-39.txt.gz",
    "de_head_0001_2017-51.txt.gz",
    "de_head_0001_2018-09.txt.gz",
    "de_head_0001_2018-17.txt.gz",
    "de_head_0001_2018-30.txt.gz",
    "de_head_0001_2018-39.txt.gz",
    "de_head_0001_2018-51.txt.gz",
    "de_head_0001_2019-09.txt.gz",
    "de_head_0001_2019-18.txt.gz",
    "de_head_0001_2019-30.txt.gz",
    "de_head_0001_2019-47.txt.gz",
    "de_head_0001_2020-10.txt.gz",
    "de_head_0002_2016-44.txt.gz",
    "de_head_0002_2017-13.txt.gz",
    "de_head_0002_2017-30.txt.gz",
    "de_head_0002_2017-39.txt.gz",
    "de_head_0002_2017-51.txt.gz",
    "de_head_0002_2018-09.txt.gz",
    "de_head_0002_2018-17.txt.gz",
    "de_head_0002_2018-30.txt.gz",
    "de_head_0002_2018-39.txt.gz",
    "de_head_0002_2018-51.txt.gz",
    "de_head_0002_2019-09.txt.gz",
    "de_head_0002_2019-18.txt.gz",
    "de_head_0002_2019-30.txt.gz",
    "de_head_0002_2019-47.txt.gz",
    "de_head_0002_2020-10.txt.gz",
    "de_head_0003_2016-44.txt.gz",
    "de_head_0003_2017-13.txt.gz",
    "de_head_0003_2017-30.txt.gz",
    "de_head_0003_2017-39.txt.gz",
    "de_head_0003_2017-51.txt.gz",
    "de_head_0003_2018-09.txt.gz",
    "de_head_0003_2018-17.txt.gz",
    "de_head_0003_2018-30.txt.gz",
    "de_head_0003_2018-39.txt.gz",
    "de_head_0003_2018-51.txt.gz",
    "de_head_0003_2019-09.txt.gz",
    "de_head_0003_2019-18.txt.gz",
    "de_head_0003_2019-30.txt.gz",
    "de_head_0003_2019-47.txt.gz",
    "de_head_0003_2020-10.txt.gz",
    "de_head_0004_2016-44.txt.gz",
    "de_head_0004_2017-30.txt.gz",
    "de_head_0004_2017-39.txt.gz",
    "de_head_0004_2017-51.txt.gz",
    "de_head_0004_2018-09.txt.gz",
    "de_head_0004_2018-17.txt.gz",
    "de_head_0004_2018-30.txt.gz",
    "de_head_0004_2018-39.txt.gz",
    "de_head_0004_2018-51.txt.gz",
    "de_head_0004_2019-09.txt.gz",
    "de_head_0004_2019-18.txt.gz",
    "de_head_0004_2019-30.txt.gz",
    "de_head_0004_2019-47.txt.gz",
    "de_head_0004_2020-10.txt.gz",
    "de_head_0005_2017-51.txt.gz",
    "de_head_0005_2018-09.txt.gz",
    "de_head_0005_2018-17.txt.gz",
    "de_head_0005_2018-30.txt.gz",
    "de_head_0005_2018-39.txt.gz",
    "de_head_0005_2018-51.txt.gz",
    "de_head_0005_2019-09.txt.gz",
    "de_head_0005_2019-18.txt.gz",
    "de_head_0005_2019-30.txt.gz",
    "de_head_0005_2019-47.txt.gz",
    "de_head_0005_2020-10.txt.gz",
    "de_head_0006_2018-09.txt.gz",
    "de_head_0006_2018-17.txt.gz",
    "de_head_0006_2018-30.txt.gz",
    "de_head_0006_2018-39.txt.gz",
    "de_head_0006_2018-51.txt.gz",
    "de_head_0006_2019-09.txt.gz",
    "de_head_0006_2019-18.txt.gz",
    "de_head_0006_2019-30.txt.gz",
    "de_head_0006_2019-47.txt.gz",
    "de_head_0006_2020-10.txt.gz",
    "de_head_0007_2018-30.txt.gz",
    "de_head_0007_2018-51.txt.gz",
    "de_head_0007_2019-09.txt.gz",
    "de_head_0007_2019-18.txt.gz",
    "de_head_0007_2019-47.txt.gz",
    "de_head_0007_2020-10.txt.gz",
]]

# TOOD add file names and convert and upload all of them
_URL_MIDDLE = [REPO_URL + file_name for file_name in [
]]


class GermanCommonCrawl(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="first", version=VERSION, description="Only the first data file"),
        datasets.BuilderConfig(name="head", version=VERSION, description=""), #TODO fill description
        datasets.BuilderConfig(name="middle", version=VERSION, description=""), #TODO fill description
        datasets.BuilderConfig(name="all", version=VERSION, description=""),  #TODO fill description
    ]

    def _info(self):
        features = datasets.Features(
            {
                "url": datasets.Value("string"),
                "date_download": datasets.Value("string"),
                "digest": datasets.Value("string"),
                "length": datasets.Value("int32"),
                "nlines": datasets.Value("int32"),
                "source_domain": datasets.Value("string"),
                "title": datasets.Value("string"),
                "raw_content": datasets.Value("string"),
                "cc_segment": datasets.Value("string"),
                "original_nlines": datasets.Value("int32"),
                "original_length": datasets.Value("int32"),
                "language": datasets.Value("string"),
                "language_score": datasets.Value("int32"),
                "perplexity": datasets.Value("int32"),
                "bucket": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, txtget) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if self.config.name == "first":
            data_files = dl_manager.download(_URL_FIRST)
        elif self.config.name == "head":
            data_files = dl_manager.download(_URL_HEAD)
        elif self.config.name == "middle":
            data_files = dl_manager.download(_URL_MIDDLE)
        else:
            data_files = dl_manager.download(_URL_HEAD + _URL_MIDDLE)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_files": data_files,
                },
            ),
        ]

    def _generate_examples(self, data_files):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        for filepath in data_files:
            with gzip.open(filepath, "rt", encoding="utf-8") as f:
                for id_, line in enumerate(f):
                    item = literal_eval(line)
                    yield id_, {
                        "url": item["url"],
                        "date_download": item["date_download"],
                        "digest": item["digest"],
                        "length": item["length"],
                        "nlines": item["nlines"],
                        "source_domain": item["source_domain"],
                        "title": item["title"],
                        "raw_content": item["raw_content"],
                        "cc_segment": item["cc_segment"],
                        "original_nlines": item["original_nlines"],
                        "original_length": item["original_length"],
                        "language": item["language"],
                        "language_score": item["language_score"],
                        "perplexity": item["perplexity"],
                        "bucket": item["bucket"],
                    }