Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,112 Bytes
f0efeef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import re

import datasets


_CITATION = """\
@inproceedings{cmu_dog_emnlp18,
    title={A Dataset for Document Grounded Conversations},
    author={Zhou, Kangyan and Prabhumoye, Shrimai and Black, Alan W},
    year={2018},
    booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}
}

@inproceedings{khanuja-etal-2020-gluecos,
    title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
    author = "Khanuja, Simran  and
      Dandapat, Sandipan  and
      Srinivasan, Anirudh  and
      Sitaram, Sunayana  and
      Choudhury, Monojit",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.329",
    pages = "3575--3585"
}
"""

_DESCRIPTION = """\
This is a collection of text conversations in Hinglish (code mixing between Hindi-English) and their corresponding English only versions. Can be used for Translating between the two.
"""

_HOMEPAGE = "http://festvox.org/cedar/data/notyet/"
_URL_HINGLISH = "http://festvox.org/cedar/data/notyet/CMUHinglishDoG.zip"
_URL_ENGLISH = "https://github.com/festvox/datasets-CMU_DoG/archive/master/Conversations.zip"


class CMUHinglishDoG(datasets.GeneratorBasedBuilder):
    """Load the CMU Hinglish DoG Data for MT"""

    def _info(self):
        features = datasets.Features(
            {
                "date": datasets.Value("string"),
                "docIdx": datasets.Value("int64"),
                "translation": datasets.Translation(languages=["en", "hi_en"]),
                "uid": datasets.Value("string"),
                "utcTimestamp": datasets.Value("string"),
                "rating": datasets.Value("int64"),
                "status": datasets.Value("int64"),
                "uid1LogInTime": datasets.Value("string"),
                "uid1LogOutTime": datasets.Value("string"),
                "uid1response": {
                    "response": datasets.Sequence(datasets.Value("int64")),
                    "type": datasets.Value("string"),
                },
                "uid2response": {
                    "response": datasets.Sequence(datasets.Value("int64")),
                    "type": datasets.Value("string"),
                },
                "user2_id": datasets.Value("string"),
                "whoSawDoc": datasets.Sequence(datasets.Value("string")),
                "wikiDocumentIdx": datasets.Value("int64"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """The linking part between Hinglish data and English data is inspired from the implementation in GLUECoS.
        Refer here for the original script https://github.com/microsoft/GLUECoS/blob/7fdc51653e37a32aee17505c47b7d1da364fa77e/Data/Preprocess_Scripts/preprocess_mt_en_hi.py"""

        eng_path = dl_manager.download_and_extract(_URL_ENGLISH)
        data_dir_en = os.path.join(eng_path, "datasets-CMU_DoG-master", "Conversations")

        hi_en_path = dl_manager.download_and_extract(_URL_HINGLISH)
        data_dir_hi_en = os.path.join(hi_en_path, "CMUHinglishDoG", "Conversations_Hinglish")

        hi_en_dirs = {
            "train": os.path.join(data_dir_hi_en, "train"),
            "valid": os.path.join(data_dir_hi_en, "valid"),
            "test": os.path.join(data_dir_hi_en, "test"),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "hi_en_dir": hi_en_dirs["train"],
                    "data_dir_en": data_dir_en,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "hi_en_dir": hi_en_dirs["test"],
                    "data_dir_en": data_dir_en,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "hi_en_dir": hi_en_dirs["valid"],
                    "data_dir_en": data_dir_en,
                },
            ),
        ]

    def _generate_examples(self, hi_en_dir, data_dir_en):
        """Yields examples."""
        english_files_train = os.listdir(os.path.join(data_dir_en, "train"))
        english_files_val = os.listdir(os.path.join(data_dir_en, "valid"))
        english_files_test = os.listdir(os.path.join(data_dir_en, "test"))

        hinglish_files = os.listdir(hi_en_dir)
        key = 0
        for f in hinglish_files:
            en_file_path = f.split(".json")[0] + ".json"
            found = True
            # Looks for the corresponding english file in all 3 splits
            if en_file_path in english_files_train:
                en = json.load(open(os.path.join(os.path.join(data_dir_en, "train"), en_file_path)))
            elif en_file_path in english_files_val:
                en = json.load(open(os.path.join(os.path.join(data_dir_en, "valid"), en_file_path)))
            elif en_file_path in english_files_test:
                en = json.load(open(os.path.join(os.path.join(data_dir_en, "test"), en_file_path)))
            else:
                found = False
            if found:
                hi_en = json.load(open(os.path.join(hi_en_dir, f)))

                assert len(en["history"]) == len(hi_en["history"])

                for x, y in zip(en["history"], hi_en["history"]):
                    assert x["docIdx"] == y["docIdx"]
                    assert x["uid"] == y["uid"]
                    assert x["utcTimestamp"] == y["utcTimestamp"]

                    x["text"] = re.sub("\t|\n", " ", x["text"])
                    y["text"] = re.sub("\t|\n", " ", y["text"])
                    line = {
                        "date": hi_en["date"],
                        "uid": x["uid"],
                        "docIdx": x["docIdx"],
                        "utcTimestamp": x["utcTimestamp"],
                        "translation": {"hi_en": y["text"], "en": x["text"]},
                        "rating": hi_en["rating"],
                        "status": hi_en["status"],
                        "uid1LogOutTime": hi_en.get("uid1LogOutTime"),
                        "uid1LogInTime": hi_en["uid1LogInTime"],
                        "uid1response": {
                            "response": hi_en["uid1response"]["response"] if "uid1response" in hi_en else [],
                            "type": hi_en["uid1response"]["type"] if "uid1response" in hi_en else None,
                        },
                        "uid2response": {
                            "response": hi_en["uid2response"]["response"] if "uid2response" in hi_en else [],
                            "type": hi_en["uid2response"]["type"] if "uid2response" in hi_en else None,
                        },
                        "user2_id": hi_en["user2_id"],
                        "whoSawDoc": hi_en["whoSawDoc"],
                        "wikiDocumentIdx": hi_en["wikiDocumentIdx"],
                    }

                    yield key, line
                    key += 1