Datasets:
File size: 8,112 Bytes
f0efeef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import datasets
_CITATION = """\
@inproceedings{cmu_dog_emnlp18,
title={A Dataset for Document Grounded Conversations},
author={Zhou, Kangyan and Prabhumoye, Shrimai and Black, Alan W},
year={2018},
booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}
}
@inproceedings{khanuja-etal-2020-gluecos,
title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
author = "Khanuja, Simran and
Dandapat, Sandipan and
Srinivasan, Anirudh and
Sitaram, Sunayana and
Choudhury, Monojit",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.329",
pages = "3575--3585"
}
"""
_DESCRIPTION = """\
This is a collection of text conversations in Hinglish (code mixing between Hindi-English) and their corresponding English only versions. Can be used for Translating between the two.
"""
_HOMEPAGE = "http://festvox.org/cedar/data/notyet/"
_URL_HINGLISH = "http://festvox.org/cedar/data/notyet/CMUHinglishDoG.zip"
_URL_ENGLISH = "https://github.com/festvox/datasets-CMU_DoG/archive/master/Conversations.zip"
class CMUHinglishDoG(datasets.GeneratorBasedBuilder):
"""Load the CMU Hinglish DoG Data for MT"""
def _info(self):
features = datasets.Features(
{
"date": datasets.Value("string"),
"docIdx": datasets.Value("int64"),
"translation": datasets.Translation(languages=["en", "hi_en"]),
"uid": datasets.Value("string"),
"utcTimestamp": datasets.Value("string"),
"rating": datasets.Value("int64"),
"status": datasets.Value("int64"),
"uid1LogInTime": datasets.Value("string"),
"uid1LogOutTime": datasets.Value("string"),
"uid1response": {
"response": datasets.Sequence(datasets.Value("int64")),
"type": datasets.Value("string"),
},
"uid2response": {
"response": datasets.Sequence(datasets.Value("int64")),
"type": datasets.Value("string"),
},
"user2_id": datasets.Value("string"),
"whoSawDoc": datasets.Sequence(datasets.Value("string")),
"wikiDocumentIdx": datasets.Value("int64"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""The linking part between Hinglish data and English data is inspired from the implementation in GLUECoS.
Refer here for the original script https://github.com/microsoft/GLUECoS/blob/7fdc51653e37a32aee17505c47b7d1da364fa77e/Data/Preprocess_Scripts/preprocess_mt_en_hi.py"""
eng_path = dl_manager.download_and_extract(_URL_ENGLISH)
data_dir_en = os.path.join(eng_path, "datasets-CMU_DoG-master", "Conversations")
hi_en_path = dl_manager.download_and_extract(_URL_HINGLISH)
data_dir_hi_en = os.path.join(hi_en_path, "CMUHinglishDoG", "Conversations_Hinglish")
hi_en_dirs = {
"train": os.path.join(data_dir_hi_en, "train"),
"valid": os.path.join(data_dir_hi_en, "valid"),
"test": os.path.join(data_dir_hi_en, "test"),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"hi_en_dir": hi_en_dirs["train"],
"data_dir_en": data_dir_en,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"hi_en_dir": hi_en_dirs["test"],
"data_dir_en": data_dir_en,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"hi_en_dir": hi_en_dirs["valid"],
"data_dir_en": data_dir_en,
},
),
]
def _generate_examples(self, hi_en_dir, data_dir_en):
"""Yields examples."""
english_files_train = os.listdir(os.path.join(data_dir_en, "train"))
english_files_val = os.listdir(os.path.join(data_dir_en, "valid"))
english_files_test = os.listdir(os.path.join(data_dir_en, "test"))
hinglish_files = os.listdir(hi_en_dir)
key = 0
for f in hinglish_files:
en_file_path = f.split(".json")[0] + ".json"
found = True
# Looks for the corresponding english file in all 3 splits
if en_file_path in english_files_train:
en = json.load(open(os.path.join(os.path.join(data_dir_en, "train"), en_file_path)))
elif en_file_path in english_files_val:
en = json.load(open(os.path.join(os.path.join(data_dir_en, "valid"), en_file_path)))
elif en_file_path in english_files_test:
en = json.load(open(os.path.join(os.path.join(data_dir_en, "test"), en_file_path)))
else:
found = False
if found:
hi_en = json.load(open(os.path.join(hi_en_dir, f)))
assert len(en["history"]) == len(hi_en["history"])
for x, y in zip(en["history"], hi_en["history"]):
assert x["docIdx"] == y["docIdx"]
assert x["uid"] == y["uid"]
assert x["utcTimestamp"] == y["utcTimestamp"]
x["text"] = re.sub("\t|\n", " ", x["text"])
y["text"] = re.sub("\t|\n", " ", y["text"])
line = {
"date": hi_en["date"],
"uid": x["uid"],
"docIdx": x["docIdx"],
"utcTimestamp": x["utcTimestamp"],
"translation": {"hi_en": y["text"], "en": x["text"]},
"rating": hi_en["rating"],
"status": hi_en["status"],
"uid1LogOutTime": hi_en.get("uid1LogOutTime"),
"uid1LogInTime": hi_en["uid1LogInTime"],
"uid1response": {
"response": hi_en["uid1response"]["response"] if "uid1response" in hi_en else [],
"type": hi_en["uid1response"]["type"] if "uid1response" in hi_en else None,
},
"uid2response": {
"response": hi_en["uid2response"]["response"] if "uid2response" in hi_en else [],
"type": hi_en["uid2response"]["type"] if "uid2response" in hi_en else None,
},
"user2_id": hi_en["user2_id"],
"whoSawDoc": hi_en["whoSawDoc"],
"wikiDocumentIdx": hi_en["wikiDocumentIdx"],
}
yield key, line
key += 1
|