File size: 2,497 Bytes
fcc0e32 ab872f8 fcc0e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import os
import textwrap
from textwrap import TextWrapper
import datasets
import pyarrow.parquet as pq
_URLS = {
"original_text": "./original_text",
"unlabeled_sentences": "./unlabeled_sentences"
}
_metadata = {
"citation": """\
@InProceedings{
huggingface:dataset,
title = {Paraguay Legislation Dataset},
author={Peres, Fernando; Costa, Victor},
year={2023}
}
""",
"description": "Dataset for researching.",
"homepage": "https://www.leyes.com.py/",
"license": "apache-2.0",
}
class TestBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="raw_text",
version=VERSION,
description="desc raw text",
),
datasets.BuilderConfig(
name="unlabeled_sentences",
version=VERSION,
description="desc unlabeled",
),
]
def _info(self):
features = None
if self.config.name == "raw_text":
features = datasets.Features(
{
"id": datasets.Value(dtype="int64"),
"text": datasets.Value(dtype="string"),
}
)
if self.config.name == "unlabeled_sentences":
features = features = datasets.Features(
{
"id": datasets.Value(dtype="int64"),
"text_2": datasets.Value(dtype="string"),
"note": datasets.Value(dtype="string"),
}
)
return datasets.DatasetInfo(
builder_name=self.config.name,
description="description xxxxxxxxxxxxxxx",
features=features,
homepage=_metadata["homepage"],
license=_metadata["license"],
citation=_metadata["citation"],
)
def _split_generators(self, dl_manager):
urls_to_download = _URLS[self.config.name]
filepaths = dl_manager.download_and_extract(urls_to_download)
return datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": filepaths},
)
def _generate_examples(self, filepath):
pq_table = pq.read_table(filepath)
for i in range(len(pq_table)):
yield i, {
col_name: pq_table[col_name][i].as_py()
for col_name in pq_table.column_names
}
|