File size: 4,809 Bytes
dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 dfd73db 8608511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import datasets
import pandas as pd
import glob
from pathlib import Path
_DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers."""
_HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans"
_CITATION = """"""
_LICENSE = "MIT"
_NAMES = [
'Leaf',
'Stem',
'Flower',
'Fruit',
]
_BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/"
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
_MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]
_METADATA_URLS = {
'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_train.csv',
'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
}
class PlantOrgansConfig(datasets.BuilderConfig):
"""Builder Config for PlantOrgans"""
def __init__(self, data_url, metadata_urls, splits, **kwargs):
"""BuilderConfig for PlantOrgans.
Args:
data_url: `string`, url to download the zip file from.
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_url = data_url
self.metadata_urls = metadata_urls
self.splits = splits
class PlantOrgans(datasets.GeneratorBasedBuilder):
"""Plantorgans dataset
"""
BUILDER_CONFIGS = [
PlantOrgansConfig(
name="semantic_segmentation_full",
description="This configuration contains segmentation masks.",
data_url=_BASE_URL,
metadata_urls=_METADATA_URLS,
splits=['train', 'test'],
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"mask": datasets.Image(),
}
),
supervised_keys=("image", "annotation"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
train_archives_paths = dl_manager.download_and_extract(_TRAIN_URLS)
test_archives_paths = dl_manager.download_and_extract(_TEST_URLS)
train_paths = []
test_paths = []
for p in train_archives_paths:
train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
for p in test_archives_paths:
test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
split_metadata_paths = dl_manager.download(_METADATA_URLS)
mask_archives_paths = dl_manager.download_and_extract(_MASKS_URLS)
mask_paths = []
for p in mask_archives_paths:
mask_paths.extend(glob.glob(str(p)+'/masks/**.png'))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": train_paths,
"metadata_path": split_metadata_paths["train"],
"masks_path": mask_paths,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"images": test_paths,
"metadata_path": split_metadata_paths["test"],
"masks_path": mask_paths,
},
),
]
def _generate_examples(self, images, metadata_path, masks_path):
"""
images: path to image directory
metadata_path: path to metadata csv
"""
# Get local image paths
image_paths = pd.DataFrame(
[(str(Path(*Path(e).parts[-3:])), e) for e in images], columns=['image', 'image_path'])
# Get local mask paths
masks_paths = pd.DataFrame(
[(str(Path(*Path(e).parts[-2:])), e) for e in masks_path], columns=['mask', 'mask_path'])
# Get all common about images and masks from csv
metadata = pd.read_csv(metadata_path)
# Merge dataframes
metadata = metadata.merge(masks_paths, on='mask', how='inner')
metadata = metadata.merge(image_paths, on='image', how='inner')
# Make examples and yield
for i, r in metadata.iterrows():
# Each example must contain path to image and list of annotations under object key
yield i, {'mask': r['mask_path'], 'image': r['image_path']} |