Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
DOI:
Libraries:
Datasets
Dask
License:
File size: 4,809 Bytes
dfd73db
8608511
 
 
dfd73db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8608511
 
dfd73db
8608511
 
dfd73db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8608511
dfd73db
 
 
 
 
 
 
 
 
 
8608511
 
 
 
 
 
 
 
 
 
 
dfd73db
8608511
 
 
 
 
 
 
dfd73db
 
 
 
8608511
dfd73db
8608511
dfd73db
 
 
 
 
8608511
dfd73db
8608511
dfd73db
 
 
8608511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfd73db
8608511
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import datasets
import pandas as pd
import glob
from pathlib import Path

_DESCRIPTION = """Photos of various plants with their major, above ground organs labeled. Includes labels for stem, leafs, fruits and flowers."""

_HOMEPAGE = "https://huggingface.co/datasets/jpodivin/plantorgans"

_CITATION = """"""

_LICENSE = "MIT"

_NAMES = [
    'Leaf',
    'Stem',
    'Flower',
    'Fruit',
]

_BASE_URL = "https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/"
_TRAIN_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(0, 8)]
_TEST_URLS = [_BASE_URL + f"sourcedata_labeled.tar.{i:02}" for i in range(8, 12)]
_MASKS_URLS = [_BASE_URL + f"masks.tar.0{i}" for i in range(0, 2)]

_METADATA_URLS = {
    'train': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_train.csv',
    'test': 'https://huggingface.co/datasets/jpodivin/plantorgans/resolve/main/metadata_test.csv'
}


class PlantOrgansConfig(datasets.BuilderConfig):
    """Builder Config for PlantOrgans"""
 
    def __init__(self, data_url, metadata_urls, splits, **kwargs):
        """BuilderConfig for PlantOrgans.
        Args:
          data_url: `string`, url to download the zip file from.
          metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
          **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.metadata_urls = metadata_urls
        self.splits = splits


class PlantOrgans(datasets.GeneratorBasedBuilder):
    """Plantorgans dataset
    """
    BUILDER_CONFIGS = [
        PlantOrgansConfig(
            name="semantic_segmentation_full",
            description="This configuration contains segmentation masks.",
            data_url=_BASE_URL,
            metadata_urls=_METADATA_URLS,
            splits=['train', 'test'],
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=datasets.Features(
            {
                "image": datasets.Image(),
                "mask": datasets.Image(),
            }
        ),
        supervised_keys=("image", "annotation"),
        homepage=_HOMEPAGE,
        citation=_CITATION,
        license=_LICENSE,
    )


    def _split_generators(self, dl_manager):
        
        train_archives_paths = dl_manager.download_and_extract(_TRAIN_URLS)
        test_archives_paths = dl_manager.download_and_extract(_TEST_URLS)
      
        train_paths = []
        test_paths = []
        
        for p in train_archives_paths:
            train_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
        for p in test_archives_paths:
            test_paths.extend(glob.glob(str(p)+'/sourcedata/labeled/**.jpg'))
        split_metadata_paths = dl_manager.download(_METADATA_URLS)

        mask_archives_paths = dl_manager.download_and_extract(_MASKS_URLS)
            
        mask_paths = []
        for p in mask_archives_paths:
            mask_paths.extend(glob.glob(str(p)+'/masks/**.png'))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": train_paths,
                    "metadata_path": split_metadata_paths["train"],
                    "masks_path": mask_paths,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": test_paths,
                    "metadata_path": split_metadata_paths["test"],
                    "masks_path": mask_paths,
                },
            ),
        ]


    def _generate_examples(self, images, metadata_path, masks_path):
        """
        images: path to image directory
        metadata_path: path to metadata csv
        """

        # Get local image paths
        image_paths = pd.DataFrame(
            [(str(Path(*Path(e).parts[-3:])), e) for e in images], columns=['image', 'image_path'])

        # Get local mask paths
        masks_paths = pd.DataFrame(
            [(str(Path(*Path(e).parts[-2:])), e) for e in masks_path], columns=['mask', 'mask_path'])
        
        # Get all common about images and masks from csv
        metadata = pd.read_csv(metadata_path)

        # Merge dataframes
        metadata = metadata.merge(masks_paths, on='mask', how='inner')
        metadata = metadata.merge(image_paths, on='image', how='inner')

        # Make examples and yield
        for i, r in metadata.iterrows():
            
            # Each example must contain path to image and list of annotations under object key
            yield i, {'mask': r['mask_path'], 'image': r['image_path']}