Convert dataset to Parquet (#10)
Browse files- Convert dataset to Parquet (bc7e4fad78d5b095db711da3108d39412e201506)
- Add bg data files (bcc6b1268836aef1a1d2ea5768c04aca22f835d1)
- Add de data files (b89054484cc1c15987069b117a7844533fc8c6e6)
- Add el data files (37284d0fde98a6780ca9a49337ef860aca9101f6)
- Add en data files (5ab89245fbc9c1b28514b43b238cdb70f330948e)
- Add es data files (174f253b693bfbb1190cb6509109f7deab9358d8)
- Add fr data files (4086fcafe44de35eb71c381438a86da03999c2e5)
- Add hi data files (ac85be690c2569945aea7058d4deacd892b3a13f)
- Add ru data files (d108e7e988e974086b30603dd8d79906b6fe57fd)
- Add sw data files (0e5fc6acfc1d5d9aa2854e1d0893aae688b56de6)
- Add th data files (4f6c4fe98633af09332dcd13a79b16cd1e37b822)
- Add tr data files (4846bbb2cb0061ee797774ec263147d504166488)
- Add ur data files (4f6a488b241050804770ffce13916a40e3c7c655)
- Add vi data files (86887d6617251ae68e8ded852625268c0340e062)
- Add zh data files (d7c818defc3e3539dd134589115c906f08657a00)
- Add all_languages data files (079130b655a6e1d3be8d969c01a6fef3c6a0c36c)
- Delete loading script (83ecd0da7773326e49a494fca44b9467b27103c8)
- Delete legacy dataset_infos.json (d0b69a6f999d31ecd5be9b61ea1be3040b66e69d)
- README.md +263 -134
- all_languages/test-00000-of-00001.parquet +3 -0
- all_languages/train-00000-of-00004.parquet +3 -0
- all_languages/train-00001-of-00004.parquet +3 -0
- all_languages/train-00002-of-00004.parquet +3 -0
- all_languages/train-00003-of-00004.parquet +3 -0
- all_languages/validation-00000-of-00001.parquet +3 -0
- ar/test-00000-of-00001.parquet +3 -0
- ar/train-00000-of-00001.parquet +3 -0
- ar/validation-00000-of-00001.parquet +3 -0
- bg/test-00000-of-00001.parquet +3 -0
- bg/train-00000-of-00001.parquet +3 -0
- bg/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- de/test-00000-of-00001.parquet +3 -0
- de/train-00000-of-00001.parquet +3 -0
- de/validation-00000-of-00001.parquet +3 -0
- el/test-00000-of-00001.parquet +3 -0
- el/train-00000-of-00001.parquet +3 -0
- el/validation-00000-of-00001.parquet +3 -0
- en/test-00000-of-00001.parquet +3 -0
- en/train-00000-of-00001.parquet +3 -0
- en/validation-00000-of-00001.parquet +3 -0
- es/test-00000-of-00001.parquet +3 -0
- es/train-00000-of-00001.parquet +3 -0
- es/validation-00000-of-00001.parquet +3 -0
- fr/test-00000-of-00001.parquet +3 -0
- fr/train-00000-of-00001.parquet +3 -0
- fr/validation-00000-of-00001.parquet +3 -0
- hi/test-00000-of-00001.parquet +3 -0
- hi/train-00000-of-00001.parquet +3 -0
- hi/validation-00000-of-00001.parquet +3 -0
- ru/test-00000-of-00001.parquet +3 -0
- ru/train-00000-of-00001.parquet +3 -0
- ru/validation-00000-of-00001.parquet +3 -0
- sw/test-00000-of-00001.parquet +3 -0
- sw/train-00000-of-00001.parquet +3 -0
- sw/validation-00000-of-00001.parquet +3 -0
- th/test-00000-of-00001.parquet +3 -0
- th/train-00000-of-00001.parquet +3 -0
- th/validation-00000-of-00001.parquet +3 -0
- tr/test-00000-of-00001.parquet +3 -0
- tr/train-00000-of-00001.parquet +3 -0
- tr/validation-00000-of-00001.parquet +3 -0
- ur/test-00000-of-00001.parquet +3 -0
- ur/train-00000-of-00001.parquet +3 -0
- ur/validation-00000-of-00001.parquet +3 -0
- vi/test-00000-of-00001.parquet +3 -0
- vi/train-00000-of-00001.parquet +3 -0
- vi/validation-00000-of-00001.parquet +3 -0
@@ -18,6 +18,66 @@ language:
|
|
18 |
paperswithcode_id: xnli
|
19 |
pretty_name: Cross-lingual Natural Language Inference
|
20 |
dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
- config_name: ar
|
22 |
features:
|
23 |
- name: premise
|
@@ -33,16 +93,16 @@ dataset_info:
|
|
33 |
'2': contradiction
|
34 |
splits:
|
35 |
- name: train
|
36 |
-
num_bytes:
|
37 |
num_examples: 392702
|
38 |
- name: test
|
39 |
-
num_bytes:
|
40 |
num_examples: 5010
|
41 |
- name: validation
|
42 |
-
num_bytes:
|
43 |
num_examples: 2490
|
44 |
-
download_size:
|
45 |
-
dataset_size:
|
46 |
- config_name: bg
|
47 |
features:
|
48 |
- name: premise
|
@@ -58,16 +118,16 @@ dataset_info:
|
|
58 |
'2': contradiction
|
59 |
splits:
|
60 |
- name: train
|
61 |
-
num_bytes:
|
62 |
num_examples: 392702
|
63 |
- name: test
|
64 |
-
num_bytes:
|
65 |
num_examples: 5010
|
66 |
- name: validation
|
67 |
-
num_bytes:
|
68 |
num_examples: 2490
|
69 |
-
download_size:
|
70 |
-
dataset_size:
|
71 |
- config_name: de
|
72 |
features:
|
73 |
- name: premise
|
@@ -83,16 +143,16 @@ dataset_info:
|
|
83 |
'2': contradiction
|
84 |
splits:
|
85 |
- name: train
|
86 |
-
num_bytes:
|
87 |
num_examples: 392702
|
88 |
- name: test
|
89 |
-
num_bytes:
|
90 |
num_examples: 5010
|
91 |
- name: validation
|
92 |
-
num_bytes:
|
93 |
num_examples: 2490
|
94 |
-
download_size:
|
95 |
-
dataset_size:
|
96 |
- config_name: el
|
97 |
features:
|
98 |
- name: premise
|
@@ -108,16 +168,16 @@ dataset_info:
|
|
108 |
'2': contradiction
|
109 |
splits:
|
110 |
- name: train
|
111 |
-
num_bytes:
|
112 |
num_examples: 392702
|
113 |
- name: test
|
114 |
-
num_bytes:
|
115 |
num_examples: 5010
|
116 |
- name: validation
|
117 |
-
num_bytes:
|
118 |
num_examples: 2490
|
119 |
-
download_size:
|
120 |
-
dataset_size:
|
121 |
- config_name: en
|
122 |
features:
|
123 |
- name: premise
|
@@ -133,16 +193,16 @@ dataset_info:
|
|
133 |
'2': contradiction
|
134 |
splits:
|
135 |
- name: train
|
136 |
-
num_bytes:
|
137 |
num_examples: 392702
|
138 |
- name: test
|
139 |
-
num_bytes:
|
140 |
num_examples: 5010
|
141 |
- name: validation
|
142 |
-
num_bytes:
|
143 |
num_examples: 2490
|
144 |
-
download_size:
|
145 |
-
dataset_size:
|
146 |
- config_name: es
|
147 |
features:
|
148 |
- name: premise
|
@@ -158,16 +218,16 @@ dataset_info:
|
|
158 |
'2': contradiction
|
159 |
splits:
|
160 |
- name: train
|
161 |
-
num_bytes:
|
162 |
num_examples: 392702
|
163 |
- name: test
|
164 |
-
num_bytes:
|
165 |
num_examples: 5010
|
166 |
- name: validation
|
167 |
-
num_bytes:
|
168 |
num_examples: 2490
|
169 |
-
download_size:
|
170 |
-
dataset_size:
|
171 |
- config_name: fr
|
172 |
features:
|
173 |
- name: premise
|
@@ -183,16 +243,16 @@ dataset_info:
|
|
183 |
'2': contradiction
|
184 |
splits:
|
185 |
- name: train
|
186 |
-
num_bytes:
|
187 |
num_examples: 392702
|
188 |
- name: test
|
189 |
-
num_bytes:
|
190 |
num_examples: 5010
|
191 |
- name: validation
|
192 |
-
num_bytes:
|
193 |
num_examples: 2490
|
194 |
-
download_size:
|
195 |
-
dataset_size:
|
196 |
- config_name: hi
|
197 |
features:
|
198 |
- name: premise
|
@@ -208,16 +268,16 @@ dataset_info:
|
|
208 |
'2': contradiction
|
209 |
splits:
|
210 |
- name: train
|
211 |
-
num_bytes:
|
212 |
num_examples: 392702
|
213 |
- name: test
|
214 |
-
num_bytes:
|
215 |
num_examples: 5010
|
216 |
- name: validation
|
217 |
-
num_bytes:
|
218 |
num_examples: 2490
|
219 |
-
download_size:
|
220 |
-
dataset_size:
|
221 |
- config_name: ru
|
222 |
features:
|
223 |
- name: premise
|
@@ -233,16 +293,16 @@ dataset_info:
|
|
233 |
'2': contradiction
|
234 |
splits:
|
235 |
- name: train
|
236 |
-
num_bytes:
|
237 |
num_examples: 392702
|
238 |
- name: test
|
239 |
-
num_bytes:
|
240 |
num_examples: 5010
|
241 |
- name: validation
|
242 |
-
num_bytes:
|
243 |
num_examples: 2490
|
244 |
-
download_size:
|
245 |
-
dataset_size:
|
246 |
- config_name: sw
|
247 |
features:
|
248 |
- name: premise
|
@@ -258,16 +318,16 @@ dataset_info:
|
|
258 |
'2': contradiction
|
259 |
splits:
|
260 |
- name: train
|
261 |
-
num_bytes:
|
262 |
num_examples: 392702
|
263 |
- name: test
|
264 |
-
num_bytes:
|
265 |
num_examples: 5010
|
266 |
- name: validation
|
267 |
-
num_bytes:
|
268 |
num_examples: 2490
|
269 |
-
download_size:
|
270 |
-
dataset_size:
|
271 |
- config_name: th
|
272 |
features:
|
273 |
- name: premise
|
@@ -283,16 +343,16 @@ dataset_info:
|
|
283 |
'2': contradiction
|
284 |
splits:
|
285 |
- name: train
|
286 |
-
num_bytes:
|
287 |
num_examples: 392702
|
288 |
- name: test
|
289 |
-
num_bytes:
|
290 |
num_examples: 5010
|
291 |
- name: validation
|
292 |
-
num_bytes:
|
293 |
num_examples: 2490
|
294 |
-
download_size:
|
295 |
-
dataset_size:
|
296 |
- config_name: tr
|
297 |
features:
|
298 |
- name: premise
|
@@ -308,16 +368,16 @@ dataset_info:
|
|
308 |
'2': contradiction
|
309 |
splits:
|
310 |
- name: train
|
311 |
-
num_bytes:
|
312 |
num_examples: 392702
|
313 |
- name: test
|
314 |
-
num_bytes:
|
315 |
num_examples: 5010
|
316 |
- name: validation
|
317 |
-
num_bytes:
|
318 |
num_examples: 2490
|
319 |
-
download_size:
|
320 |
-
dataset_size:
|
321 |
- config_name: ur
|
322 |
features:
|
323 |
- name: premise
|
@@ -333,16 +393,16 @@ dataset_info:
|
|
333 |
'2': contradiction
|
334 |
splits:
|
335 |
- name: train
|
336 |
-
num_bytes:
|
337 |
num_examples: 392702
|
338 |
- name: test
|
339 |
-
num_bytes:
|
340 |
num_examples: 5010
|
341 |
- name: validation
|
342 |
-
num_bytes:
|
343 |
num_examples: 2490
|
344 |
-
download_size:
|
345 |
-
dataset_size:
|
346 |
- config_name: vi
|
347 |
features:
|
348 |
- name: premise
|
@@ -358,16 +418,16 @@ dataset_info:
|
|
358 |
'2': contradiction
|
359 |
splits:
|
360 |
- name: train
|
361 |
-
num_bytes:
|
362 |
num_examples: 392702
|
363 |
- name: test
|
364 |
-
num_bytes:
|
365 |
num_examples: 5010
|
366 |
- name: validation
|
367 |
-
num_bytes:
|
368 |
num_examples: 2490
|
369 |
-
download_size:
|
370 |
-
dataset_size:
|
371 |
- config_name: zh
|
372 |
features:
|
373 |
- name: premise
|
@@ -383,76 +443,145 @@ dataset_info:
|
|
383 |
'2': contradiction
|
384 |
splits:
|
385 |
- name: train
|
386 |
-
num_bytes:
|
387 |
num_examples: 392702
|
388 |
- name: test
|
389 |
-
num_bytes:
|
390 |
num_examples: 5010
|
391 |
- name: validation
|
392 |
-
num_bytes:
|
393 |
num_examples: 2490
|
394 |
-
download_size:
|
395 |
-
dataset_size:
|
|
|
396 |
- config_name: all_languages
|
397 |
-
|
398 |
-
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
---
|
457 |
|
458 |
# Dataset Card for "xnli"
|
|
|
18 |
paperswithcode_id: xnli
|
19 |
pretty_name: Cross-lingual Natural Language Inference
|
20 |
dataset_info:
|
21 |
+
- config_name: all_languages
|
22 |
+
features:
|
23 |
+
- name: premise
|
24 |
+
dtype:
|
25 |
+
translation:
|
26 |
+
languages:
|
27 |
+
- ar
|
28 |
+
- bg
|
29 |
+
- de
|
30 |
+
- el
|
31 |
+
- en
|
32 |
+
- es
|
33 |
+
- fr
|
34 |
+
- hi
|
35 |
+
- ru
|
36 |
+
- sw
|
37 |
+
- th
|
38 |
+
- tr
|
39 |
+
- ur
|
40 |
+
- vi
|
41 |
+
- zh
|
42 |
+
- name: hypothesis
|
43 |
+
dtype:
|
44 |
+
translation_variable_languages:
|
45 |
+
languages:
|
46 |
+
- ar
|
47 |
+
- bg
|
48 |
+
- de
|
49 |
+
- el
|
50 |
+
- en
|
51 |
+
- es
|
52 |
+
- fr
|
53 |
+
- hi
|
54 |
+
- ru
|
55 |
+
- sw
|
56 |
+
- th
|
57 |
+
- tr
|
58 |
+
- ur
|
59 |
+
- vi
|
60 |
+
- zh
|
61 |
+
num_languages: 15
|
62 |
+
- name: label
|
63 |
+
dtype:
|
64 |
+
class_label:
|
65 |
+
names:
|
66 |
+
'0': entailment
|
67 |
+
'1': neutral
|
68 |
+
'2': contradiction
|
69 |
+
splits:
|
70 |
+
- name: train
|
71 |
+
num_bytes: 1581471691
|
72 |
+
num_examples: 392702
|
73 |
+
- name: test
|
74 |
+
num_bytes: 19387432
|
75 |
+
num_examples: 5010
|
76 |
+
- name: validation
|
77 |
+
num_bytes: 9566179
|
78 |
+
num_examples: 2490
|
79 |
+
download_size: 963942271
|
80 |
+
dataset_size: 1610425302
|
81 |
- config_name: ar
|
82 |
features:
|
83 |
- name: premise
|
|
|
93 |
'2': contradiction
|
94 |
splits:
|
95 |
- name: train
|
96 |
+
num_bytes: 107399614
|
97 |
num_examples: 392702
|
98 |
- name: test
|
99 |
+
num_bytes: 1294553
|
100 |
num_examples: 5010
|
101 |
- name: validation
|
102 |
+
num_bytes: 633001
|
103 |
num_examples: 2490
|
104 |
+
download_size: 59215902
|
105 |
+
dataset_size: 109327168
|
106 |
- config_name: bg
|
107 |
features:
|
108 |
- name: premise
|
|
|
118 |
'2': contradiction
|
119 |
splits:
|
120 |
- name: train
|
121 |
+
num_bytes: 125973225
|
122 |
num_examples: 392702
|
123 |
- name: test
|
124 |
+
num_bytes: 1573034
|
125 |
num_examples: 5010
|
126 |
- name: validation
|
127 |
+
num_bytes: 774061
|
128 |
num_examples: 2490
|
129 |
+
download_size: 66117878
|
130 |
+
dataset_size: 128320320
|
131 |
- config_name: de
|
132 |
features:
|
133 |
- name: premise
|
|
|
143 |
'2': contradiction
|
144 |
splits:
|
145 |
- name: train
|
146 |
+
num_bytes: 84684140
|
147 |
num_examples: 392702
|
148 |
- name: test
|
149 |
+
num_bytes: 996488
|
150 |
num_examples: 5010
|
151 |
- name: validation
|
152 |
+
num_bytes: 494604
|
153 |
num_examples: 2490
|
154 |
+
download_size: 55973883
|
155 |
+
dataset_size: 86175232
|
156 |
- config_name: el
|
157 |
features:
|
158 |
- name: premise
|
|
|
168 |
'2': contradiction
|
169 |
splits:
|
170 |
- name: train
|
171 |
+
num_bytes: 139753358
|
172 |
num_examples: 392702
|
173 |
- name: test
|
174 |
+
num_bytes: 1704785
|
175 |
num_examples: 5010
|
176 |
- name: validation
|
177 |
+
num_bytes: 841226
|
178 |
num_examples: 2490
|
179 |
+
download_size: 74551247
|
180 |
+
dataset_size: 142299369
|
181 |
- config_name: en
|
182 |
features:
|
183 |
- name: premise
|
|
|
193 |
'2': contradiction
|
194 |
splits:
|
195 |
- name: train
|
196 |
+
num_bytes: 74444026
|
197 |
num_examples: 392702
|
198 |
- name: test
|
199 |
+
num_bytes: 875134
|
200 |
num_examples: 5010
|
201 |
- name: validation
|
202 |
+
num_bytes: 433463
|
203 |
num_examples: 2490
|
204 |
+
download_size: 50627367
|
205 |
+
dataset_size: 75752623
|
206 |
- config_name: es
|
207 |
features:
|
208 |
- name: premise
|
|
|
218 |
'2': contradiction
|
219 |
splits:
|
220 |
- name: train
|
221 |
+
num_bytes: 81383284
|
222 |
num_examples: 392702
|
223 |
- name: test
|
224 |
+
num_bytes: 969813
|
225 |
num_examples: 5010
|
226 |
- name: validation
|
227 |
+
num_bytes: 478422
|
228 |
num_examples: 2490
|
229 |
+
download_size: 53677157
|
230 |
+
dataset_size: 82831519
|
231 |
- config_name: fr
|
232 |
features:
|
233 |
- name: premise
|
|
|
243 |
'2': contradiction
|
244 |
splits:
|
245 |
- name: train
|
246 |
+
num_bytes: 85808779
|
247 |
num_examples: 392702
|
248 |
- name: test
|
249 |
+
num_bytes: 1029239
|
250 |
num_examples: 5010
|
251 |
- name: validation
|
252 |
+
num_bytes: 510104
|
253 |
num_examples: 2490
|
254 |
+
download_size: 55968680
|
255 |
+
dataset_size: 87348122
|
256 |
- config_name: hi
|
257 |
features:
|
258 |
- name: premise
|
|
|
268 |
'2': contradiction
|
269 |
splits:
|
270 |
- name: train
|
271 |
+
num_bytes: 170593964
|
272 |
num_examples: 392702
|
273 |
- name: test
|
274 |
+
num_bytes: 2073073
|
275 |
num_examples: 5010
|
276 |
- name: validation
|
277 |
+
num_bytes: 1023915
|
278 |
num_examples: 2490
|
279 |
+
download_size: 70908548
|
280 |
+
dataset_size: 173690952
|
281 |
- config_name: ru
|
282 |
features:
|
283 |
- name: premise
|
|
|
293 |
'2': contradiction
|
294 |
splits:
|
295 |
- name: train
|
296 |
+
num_bytes: 129859615
|
297 |
num_examples: 392702
|
298 |
- name: test
|
299 |
+
num_bytes: 1603466
|
300 |
num_examples: 5010
|
301 |
- name: validation
|
302 |
+
num_bytes: 786442
|
303 |
num_examples: 2490
|
304 |
+
download_size: 70702606
|
305 |
+
dataset_size: 132249523
|
306 |
- config_name: sw
|
307 |
features:
|
308 |
- name: premise
|
|
|
318 |
'2': contradiction
|
319 |
splits:
|
320 |
- name: train
|
321 |
+
num_bytes: 69285725
|
322 |
num_examples: 392702
|
323 |
- name: test
|
324 |
+
num_bytes: 871651
|
325 |
num_examples: 5010
|
326 |
- name: validation
|
327 |
+
num_bytes: 429850
|
328 |
num_examples: 2490
|
329 |
+
download_size: 45564152
|
330 |
+
dataset_size: 70587226
|
331 |
- config_name: th
|
332 |
features:
|
333 |
- name: premise
|
|
|
343 |
'2': contradiction
|
344 |
splits:
|
345 |
- name: train
|
346 |
+
num_bytes: 176062892
|
347 |
num_examples: 392702
|
348 |
- name: test
|
349 |
+
num_bytes: 2147015
|
350 |
num_examples: 5010
|
351 |
- name: validation
|
352 |
+
num_bytes: 1061160
|
353 |
num_examples: 2490
|
354 |
+
download_size: 77222045
|
355 |
+
dataset_size: 179271067
|
356 |
- config_name: tr
|
357 |
features:
|
358 |
- name: premise
|
|
|
368 |
'2': contradiction
|
369 |
splits:
|
370 |
- name: train
|
371 |
+
num_bytes: 71637140
|
372 |
num_examples: 392702
|
373 |
- name: test
|
374 |
+
num_bytes: 934934
|
375 |
num_examples: 5010
|
376 |
- name: validation
|
377 |
+
num_bytes: 459308
|
378 |
num_examples: 2490
|
379 |
+
download_size: 48509680
|
380 |
+
dataset_size: 73031382
|
381 |
- config_name: ur
|
382 |
features:
|
383 |
- name: premise
|
|
|
393 |
'2': contradiction
|
394 |
splits:
|
395 |
- name: train
|
396 |
+
num_bytes: 96441486
|
397 |
num_examples: 392702
|
398 |
- name: test
|
399 |
+
num_bytes: 1416241
|
400 |
num_examples: 5010
|
401 |
- name: validation
|
402 |
+
num_bytes: 699952
|
403 |
num_examples: 2490
|
404 |
+
download_size: 46682785
|
405 |
+
dataset_size: 98557679
|
406 |
- config_name: vi
|
407 |
features:
|
408 |
- name: premise
|
|
|
418 |
'2': contradiction
|
419 |
splits:
|
420 |
- name: train
|
421 |
+
num_bytes: 101417430
|
422 |
num_examples: 392702
|
423 |
- name: test
|
424 |
+
num_bytes: 1190217
|
425 |
num_examples: 5010
|
426 |
- name: validation
|
427 |
+
num_bytes: 590680
|
428 |
num_examples: 2490
|
429 |
+
download_size: 57690058
|
430 |
+
dataset_size: 103198327
|
431 |
- config_name: zh
|
432 |
features:
|
433 |
- name: premise
|
|
|
443 |
'2': contradiction
|
444 |
splits:
|
445 |
- name: train
|
446 |
+
num_bytes: 72224841
|
447 |
num_examples: 392702
|
448 |
- name: test
|
449 |
+
num_bytes: 777929
|
450 |
num_examples: 5010
|
451 |
- name: validation
|
452 |
+
num_bytes: 384851
|
453 |
num_examples: 2490
|
454 |
+
download_size: 48269855
|
455 |
+
dataset_size: 73387621
|
456 |
+
configs:
|
457 |
- config_name: all_languages
|
458 |
+
data_files:
|
459 |
+
- split: train
|
460 |
+
path: all_languages/train-*
|
461 |
+
- split: test
|
462 |
+
path: all_languages/test-*
|
463 |
+
- split: validation
|
464 |
+
path: all_languages/validation-*
|
465 |
+
- config_name: ar
|
466 |
+
data_files:
|
467 |
+
- split: train
|
468 |
+
path: ar/train-*
|
469 |
+
- split: test
|
470 |
+
path: ar/test-*
|
471 |
+
- split: validation
|
472 |
+
path: ar/validation-*
|
473 |
+
- config_name: bg
|
474 |
+
data_files:
|
475 |
+
- split: train
|
476 |
+
path: bg/train-*
|
477 |
+
- split: test
|
478 |
+
path: bg/test-*
|
479 |
+
- split: validation
|
480 |
+
path: bg/validation-*
|
481 |
+
- config_name: de
|
482 |
+
data_files:
|
483 |
+
- split: train
|
484 |
+
path: de/train-*
|
485 |
+
- split: test
|
486 |
+
path: de/test-*
|
487 |
+
- split: validation
|
488 |
+
path: de/validation-*
|
489 |
+
- config_name: el
|
490 |
+
data_files:
|
491 |
+
- split: train
|
492 |
+
path: el/train-*
|
493 |
+
- split: test
|
494 |
+
path: el/test-*
|
495 |
+
- split: validation
|
496 |
+
path: el/validation-*
|
497 |
+
- config_name: en
|
498 |
+
data_files:
|
499 |
+
- split: train
|
500 |
+
path: en/train-*
|
501 |
+
- split: test
|
502 |
+
path: en/test-*
|
503 |
+
- split: validation
|
504 |
+
path: en/validation-*
|
505 |
+
- config_name: es
|
506 |
+
data_files:
|
507 |
+
- split: train
|
508 |
+
path: es/train-*
|
509 |
+
- split: test
|
510 |
+
path: es/test-*
|
511 |
+
- split: validation
|
512 |
+
path: es/validation-*
|
513 |
+
- config_name: fr
|
514 |
+
data_files:
|
515 |
+
- split: train
|
516 |
+
path: fr/train-*
|
517 |
+
- split: test
|
518 |
+
path: fr/test-*
|
519 |
+
- split: validation
|
520 |
+
path: fr/validation-*
|
521 |
+
- config_name: hi
|
522 |
+
data_files:
|
523 |
+
- split: train
|
524 |
+
path: hi/train-*
|
525 |
+
- split: test
|
526 |
+
path: hi/test-*
|
527 |
+
- split: validation
|
528 |
+
path: hi/validation-*
|
529 |
+
- config_name: ru
|
530 |
+
data_files:
|
531 |
+
- split: train
|
532 |
+
path: ru/train-*
|
533 |
+
- split: test
|
534 |
+
path: ru/test-*
|
535 |
+
- split: validation
|
536 |
+
path: ru/validation-*
|
537 |
+
- config_name: sw
|
538 |
+
data_files:
|
539 |
+
- split: train
|
540 |
+
path: sw/train-*
|
541 |
+
- split: test
|
542 |
+
path: sw/test-*
|
543 |
+
- split: validation
|
544 |
+
path: sw/validation-*
|
545 |
+
- config_name: th
|
546 |
+
data_files:
|
547 |
+
- split: train
|
548 |
+
path: th/train-*
|
549 |
+
- split: test
|
550 |
+
path: th/test-*
|
551 |
+
- split: validation
|
552 |
+
path: th/validation-*
|
553 |
+
- config_name: tr
|
554 |
+
data_files:
|
555 |
+
- split: train
|
556 |
+
path: tr/train-*
|
557 |
+
- split: test
|
558 |
+
path: tr/test-*
|
559 |
+
- split: validation
|
560 |
+
path: tr/validation-*
|
561 |
+
- config_name: ur
|
562 |
+
data_files:
|
563 |
+
- split: train
|
564 |
+
path: ur/train-*
|
565 |
+
- split: test
|
566 |
+
path: ur/test-*
|
567 |
+
- split: validation
|
568 |
+
path: ur/validation-*
|
569 |
+
- config_name: vi
|
570 |
+
data_files:
|
571 |
+
- split: train
|
572 |
+
path: vi/train-*
|
573 |
+
- split: test
|
574 |
+
path: vi/test-*
|
575 |
+
- split: validation
|
576 |
+
path: vi/validation-*
|
577 |
+
- config_name: zh
|
578 |
+
data_files:
|
579 |
+
- split: train
|
580 |
+
path: zh/train-*
|
581 |
+
- split: test
|
582 |
+
path: zh/test-*
|
583 |
+
- split: validation
|
584 |
+
path: zh/validation-*
|
585 |
---
|
586 |
|
587 |
# Dataset Card for "xnli"
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:599e3a0191403f19cbe802afdf69841152000b41eaed725e4f463d432c0ffb49
|
3 |
+
size 6769722
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beeb34bbb7779413d78c09f5746baf05b7a79ab37ff063f882f201412c437ddb
|
3 |
+
size 237658468
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f3365b09a00408fa6b1de52e14f915decedab864376a179cc5f65937044a2c0
|
3 |
+
size 238583683
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:340d804e040607dee5c5b0581ccfd390901255129c4bfb4f81e9e7605b76a0d7
|
3 |
+
size 238115767
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05011ebb98705d0cbc5482fbc555f146dbc4e02890efa28e7774748539f5737
|
3 |
+
size 239422128
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5e6263b0872a3914c9bc165bfe3883e433aa2066c3fa3b9d142829a9b122518
|
3 |
+
size 3392503
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89521231aa5f8404c46fcc5d421a9453819ca48bb99590680fa31fb8c82cf8bd
|
3 |
+
size 391980
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a27850bd0e20411f7c08e7c2247413c0050669090ef23cb5263d138be937e89
|
3 |
+
size 58630165
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df098db4682a6a97dc4a08be518b60e58112f0e32df2d4c4c933e34db577cd3
|
3 |
+
size 193757
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:333a5e84e09415f6a80dd285c4aa64d164bf721237b3e3d34892ce72066c92c1
|
3 |
+
size 447341
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df65135e5813d4a42b3fd8e018ebfaecd981f7c313bbcfd7288e2019f0f4296c
|
3 |
+
size 65447048
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfd1a75d8b1c82b97d857aa91cd9bf08e75d1ea58ab43109c2644e82079ac981
|
3 |
+
size 223489
|
@@ -1 +0,0 @@
|
|
1 |
-
{"ar": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ar", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 107399934, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1294561, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 633009, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 109327504, "size_in_bytes": 593291216}, "bg": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "bg", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 125973545, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1573042, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 774069, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 128320656, "size_in_bytes": 612284368}, "de": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "de", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 84684460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 996496, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 494612, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 86175568, "size_in_bytes": 570139280}, "el": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "el", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 139753678, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1704793, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 841234, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 142299705, "size_in_bytes": 626263417}, "en": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 74444346, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 875142, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 433471, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 75752959, "size_in_bytes": 559716671}, "es": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "es", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 81383604, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 969821, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 478430, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 82831855, "size_in_bytes": 566795567}, "fr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85809099, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1029247, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 510112, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 87348458, "size_in_bytes": 571312170}, "hi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "hi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 170594284, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2073081, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1023923, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 173691288, "size_in_bytes": 657655000}, "ru": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 129859935, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1603474, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 786450, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 132249859, "size_in_bytes": 616213571}, "sw": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "sw", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 69286045, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 871659, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 429858, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 70587562, "size_in_bytes": 554551274}, "th": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "th", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 176063212, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2147023, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1061168, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 179271403, "size_in_bytes": 663235115}, "tr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "tr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71637460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 934942, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 459316, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73031718, "size_in_bytes": 556995430}, "ur": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ur", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96441806, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1416249, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 699960, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 98558015, "size_in_bytes": 582521727}, "vi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "vi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 101417750, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1190225, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 590688, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 103198663, "size_in_bytes": 587162375}, "zh": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "zh", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 72225161, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 777937, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 384859, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73387957, "size_in_bytes": 557351669}, "all_languages": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "id": null, "_type": "Translation"}, "hypothesis": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "num_languages": 15, "id": null, "_type": "TranslationVariableLanguages"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "all_languages", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1581474731, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 19387508, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 9566255, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 1610428494, "size_in_bytes": 2094392206}}
|
|
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c25f5695d21673dbe966bac7b3c6a1e2df369431976928565c3cc56838f5632b
|
3 |
+
size 356132
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72b2d2adf469509cc6917213feb9ff17bc1919889e3f0dbe848e01660602ec7b
|
3 |
+
size 55436761
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68f6b30f13ba0fb92acf2567edd7cb1ec26a6b8b38c2274eb6f140fb7075f66e
|
3 |
+
size 180990
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:971110ccb25026cd75d8f8f0e0444877f8e9da7425b55be5fb97de74f9276e5b
|
3 |
+
size 489529
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2663e218de5250a1cc62c32121807175a4453a4102b1e99cb13d20399d911d87
|
3 |
+
size 73814854
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d173137cc27825fb0cb1dea81310141a5206692d78c150e28d23dac6f3f30e8e
|
3 |
+
size 246864
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f0fd1e105091e0f11cd37f9b2bc382f16de9949aa9471e1366b2605ba037167
|
3 |
+
size 308237
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6be63cec9ec932a5790de82caee7ee4d00e5a50ef19b79f23b740732da143424
|
3 |
+
size 50161923
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42961a7b66dee147da655d78db8cbaac97b3dbcf898009acffec6cda2d80f2bf
|
3 |
+
size 157207
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0159c9a734d7d0683d20a9850adcf3e214a49179b6517fea5868744bfd99886
|
3 |
+
size 341925
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f609c655a0c200168235609e7709bcf3ac48a465b4c6e90380093862a53a3a2a
|
3 |
+
size 53162139
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1913c1256f5b8761fba3f734e260d0b5e228a02ee31a8651ee915261cdf7c631
|
3 |
+
size 173093
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bfce918feee19f8070106963281e46ae801d03583dd0786b443c2f200607d62
|
3 |
+
size 360233
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e05c0cac22eba1d8c00ea0558b225af5d741671066abc9bcbc98584930f14b90
|
3 |
+
size 55425053
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f97d84263ac129e54cdeec7bde66b3da9f8b1ba42cfabd0d0b3c5ac7f442cc2
|
3 |
+
size 183394
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e946c50370a8fcc8cc58adb74a2625e5377f55c3f4ba821fd9d305c8d4b14c4e
|
3 |
+
size 492625
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4fab2db1b6c29e0ad9b238f0f12f709f878986f8e074379821efd120e13f467
|
3 |
+
size 70167282
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4cdc8ab6ab3a086dd7bc624b531a518e25352eb2907fb335643c7545e994ee0
|
3 |
+
size 248641
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d939fb4f7f2b61a863fb85dde9f6ef0221dde161fb86170fb10c27ea7d9d4d0
|
3 |
+
size 477352
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5db75fb1e1646d7a39dda45cdcd9b7ba95cfa1f2af0009151e8db34c22ca6f5a
|
3 |
+
size 69986524
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a75ecd12d4145e2eefe22c08cb4ae4b966d18ce7452bdf26ee04f2d4c499078
|
3 |
+
size 238730
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b0bfad4e885a468752a5f17e4c620ac75f64902a2cef2da23f1c1e5ac973a29
|
3 |
+
size 312255
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3282ea435eda702e713b958adcc1f053f415f9f57704b21cc441e1d86b834f52
|
3 |
+
size 45093826
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dd236d01144c13829450cfbc12ffcc33ecdcf289a02b4c6a60ca78a557eb80b
|
3 |
+
size 158071
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ca847893c31a98757d0aedcffacdcca8246922d5c3782c48c735db7e6137b1
|
3 |
+
size 503402
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec65ff12beef95f3ee4f59aa115252656d81b41ce4b39816760f88948d138dbc
|
3 |
+
size 76466353
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09abadf254309e8c145777854f95c15024ab6fe29a630f7cd5aec640bffca254
|
3 |
+
size 252290
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1cffb8f840d8862ab11f4727b975d408bf6f3370585cbb96733b5456902b89a
|
3 |
+
size 338133
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30d0b154e3c8b2a9eb7f91aeeb29c4285c96550c42aa5ce5b4d6523be2cbafa5
|
3 |
+
size 47999788
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e98b0590ff9ef4464621690f620f463288c6db079eb6210d84c9ec175f04607
|
3 |
+
size 171759
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:780b0b46fe8234fc9d478978d742697b82bd43cb7f34a63d2993e8a65c54352b
|
3 |
+
size 427737
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0d6d2105e1433a93096cdc61892c96f93e82e48d6495d1281e656212049e3dc
|
3 |
+
size 46038912
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a317147da65a9c9eadbae0328068d7e8f3f7874e8215fba31e2ca2c2f55fbabd
|
3 |
+
size 216136
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34918143e8de1172147abd6fd78f369d6b6b6c2f5a016c2a4febc10190803fb1
|
3 |
+
size 364126
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0eefcc40a026d25745a8edc6080ab8200a2307f974f333af32552c323a3dddc
|
3 |
+
size 57140047
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff6d6aa869a554c38e43be21be8e880e3422cbccc7cc04bd0544ff2931af6f82
|
3 |
+
size 185885
|