albertvillanova HF staff commited on
Commit
83ecd0d
1 Parent(s): 079130b

Delete loading script

Browse files
Files changed (1) hide show
  1. xnli.py +0 -211
xnli.py DELETED
@@ -1,211 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """XNLI: The Cross-Lingual NLI Corpus."""
18
-
19
-
20
- import collections
21
- import csv
22
- import os
23
- from contextlib import ExitStack
24
-
25
- import datasets
26
-
27
-
28
- _CITATION = """\
29
- @InProceedings{conneau2018xnli,
30
- author = {Conneau, Alexis
31
- and Rinott, Ruty
32
- and Lample, Guillaume
33
- and Williams, Adina
34
- and Bowman, Samuel R.
35
- and Schwenk, Holger
36
- and Stoyanov, Veselin},
37
- title = {XNLI: Evaluating Cross-lingual Sentence Representations},
38
- booktitle = {Proceedings of the 2018 Conference on Empirical Methods
39
- in Natural Language Processing},
40
- year = {2018},
41
- publisher = {Association for Computational Linguistics},
42
- location = {Brussels, Belgium},
43
- }"""
44
-
45
- _DESCRIPTION = """\
46
- XNLI is a subset of a few thousand examples from MNLI which has been translated
47
- into a 14 different languages (some low-ish resource). As with MNLI, the goal is
48
- to predict textual entailment (does sentence A imply/contradict/neither sentence
49
- B) and is a classification task (given two sentences, predict one of three
50
- labels).
51
- """
52
-
53
- _TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
54
- _TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"
55
-
56
- _LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh")
57
-
58
-
59
- class XnliConfig(datasets.BuilderConfig):
60
- """BuilderConfig for XNLI."""
61
-
62
- def __init__(self, language: str, languages=None, **kwargs):
63
- """BuilderConfig for XNLI.
64
-
65
- Args:
66
- language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages
67
- **kwargs: keyword arguments forwarded to super.
68
- """
69
- super(XnliConfig, self).__init__(**kwargs)
70
- self.language = language
71
- if language != "all_languages":
72
- self.languages = [language]
73
- else:
74
- self.languages = languages if languages is not None else _LANGUAGES
75
-
76
-
77
- class Xnli(datasets.GeneratorBasedBuilder):
78
- """XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""
79
-
80
- VERSION = datasets.Version("1.1.0", "")
81
- BUILDER_CONFIG_CLASS = XnliConfig
82
- BUILDER_CONFIGS = [
83
- XnliConfig(
84
- name=lang,
85
- language=lang,
86
- version=datasets.Version("1.1.0", ""),
87
- description=f"Plain text import of XNLI for the {lang} language",
88
- )
89
- for lang in _LANGUAGES
90
- ] + [
91
- XnliConfig(
92
- name="all_languages",
93
- language="all_languages",
94
- version=datasets.Version("1.1.0", ""),
95
- description="Plain text import of XNLI for all languages",
96
- )
97
- ]
98
-
99
- def _info(self):
100
- if self.config.language == "all_languages":
101
- features = datasets.Features(
102
- {
103
- "premise": datasets.Translation(
104
- languages=_LANGUAGES,
105
- ),
106
- "hypothesis": datasets.TranslationVariableLanguages(
107
- languages=_LANGUAGES,
108
- ),
109
- "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
110
- }
111
- )
112
- else:
113
- features = datasets.Features(
114
- {
115
- "premise": datasets.Value("string"),
116
- "hypothesis": datasets.Value("string"),
117
- "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
118
- }
119
- )
120
- return datasets.DatasetInfo(
121
- description=_DESCRIPTION,
122
- features=features,
123
- # No default supervised_keys (as we have to pass both premise
124
- # and hypothesis as input).
125
- supervised_keys=None,
126
- homepage="https://www.nyu.edu/projects/bowman/xnli/",
127
- citation=_CITATION,
128
- )
129
-
130
- def _split_generators(self, dl_manager):
131
- dl_dirs = dl_manager.download_and_extract(
132
- {
133
- "train_data": _TRAIN_DATA_URL,
134
- "testval_data": _TESTVAL_DATA_URL,
135
- }
136
- )
137
- train_dir = os.path.join(dl_dirs["train_data"], "XNLI-MT-1.0", "multinli")
138
- testval_dir = os.path.join(dl_dirs["testval_data"], "XNLI-1.0")
139
- return [
140
- datasets.SplitGenerator(
141
- name=datasets.Split.TRAIN,
142
- gen_kwargs={
143
- "filepaths": [
144
- os.path.join(train_dir, f"multinli.train.{lang}.tsv") for lang in self.config.languages
145
- ],
146
- "data_format": "XNLI-MT",
147
- },
148
- ),
149
- datasets.SplitGenerator(
150
- name=datasets.Split.TEST,
151
- gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
152
- ),
153
- datasets.SplitGenerator(
154
- name=datasets.Split.VALIDATION,
155
- gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
156
- ),
157
- ]
158
-
159
- def _generate_examples(self, data_format, filepaths):
160
- """This function returns the examples in the raw (text) form."""
161
-
162
- if self.config.language == "all_languages":
163
- if data_format == "XNLI-MT":
164
- with ExitStack() as stack:
165
- files = [stack.enter_context(open(filepath, encoding="utf-8")) for filepath in filepaths]
166
- readers = [csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
167
- for row_idx, rows in enumerate(zip(*readers)):
168
- yield row_idx, {
169
- "premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
170
- "hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
171
- "label": rows[0]["label"].replace("contradictory", "contradiction"),
172
- }
173
- else:
174
- rows_per_pair_id = collections.defaultdict(list)
175
- for filepath in filepaths:
176
- with open(filepath, encoding="utf-8") as f:
177
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
178
- for row in reader:
179
- rows_per_pair_id[row["pairID"]].append(row)
180
-
181
- for rows in rows_per_pair_id.values():
182
- premise = {row["language"]: row["sentence1"] for row in rows}
183
- hypothesis = {row["language"]: row["sentence2"] for row in rows}
184
- yield rows[0]["pairID"], {
185
- "premise": premise,
186
- "hypothesis": hypothesis,
187
- "label": rows[0]["gold_label"],
188
- }
189
- else:
190
- if data_format == "XNLI-MT":
191
- for file_idx, filepath in enumerate(filepaths):
192
- file = open(filepath, encoding="utf-8")
193
- reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
194
- for row_idx, row in enumerate(reader):
195
- key = str(file_idx) + "_" + str(row_idx)
196
- yield key, {
197
- "premise": row["premise"],
198
- "hypothesis": row["hypo"],
199
- "label": row["label"].replace("contradictory", "contradiction"),
200
- }
201
- else:
202
- for filepath in filepaths:
203
- with open(filepath, encoding="utf-8") as f:
204
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
205
- for row in reader:
206
- if row["language"] == self.config.language:
207
- yield row["pairID"], {
208
- "premise": row["sentence1"],
209
- "hypothesis": row["sentence2"],
210
- "label": row["gold_label"],
211
- }