Commit
•
bc7e4fa
1
Parent(s):
1cdcf07
Convert dataset to Parquet
Browse filesConvert dataset to Parquet.
- README.md +74 -65
- ar/test-00000-of-00001.parquet +3 -0
- ar/train-00000-of-00001.parquet +3 -0
- ar/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +1202 -1
README.md
CHANGED
@@ -18,6 +18,66 @@ language:
|
|
18 |
paperswithcode_id: xnli
|
19 |
pretty_name: Cross-lingual Natural Language Inference
|
20 |
dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
- config_name: ar
|
22 |
features:
|
23 |
- name: premise
|
@@ -33,16 +93,16 @@ dataset_info:
|
|
33 |
'2': contradiction
|
34 |
splits:
|
35 |
- name: train
|
36 |
-
num_bytes:
|
37 |
num_examples: 392702
|
38 |
- name: test
|
39 |
-
num_bytes:
|
40 |
num_examples: 5010
|
41 |
- name: validation
|
42 |
-
num_bytes:
|
43 |
num_examples: 2490
|
44 |
-
download_size:
|
45 |
-
dataset_size:
|
46 |
- config_name: bg
|
47 |
features:
|
48 |
- name: premise
|
@@ -393,66 +453,15 @@ dataset_info:
|
|
393 |
num_examples: 2490
|
394 |
download_size: 483963712
|
395 |
dataset_size: 73387957
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
- el
|
406 |
-
- en
|
407 |
-
- es
|
408 |
-
- fr
|
409 |
-
- hi
|
410 |
-
- ru
|
411 |
-
- sw
|
412 |
-
- th
|
413 |
-
- tr
|
414 |
-
- ur
|
415 |
-
- vi
|
416 |
-
- zh
|
417 |
-
- name: hypothesis
|
418 |
-
dtype:
|
419 |
-
translation_variable_languages:
|
420 |
-
languages:
|
421 |
-
- ar
|
422 |
-
- bg
|
423 |
-
- de
|
424 |
-
- el
|
425 |
-
- en
|
426 |
-
- es
|
427 |
-
- fr
|
428 |
-
- hi
|
429 |
-
- ru
|
430 |
-
- sw
|
431 |
-
- th
|
432 |
-
- tr
|
433 |
-
- ur
|
434 |
-
- vi
|
435 |
-
- zh
|
436 |
-
num_languages: 15
|
437 |
-
- name: label
|
438 |
-
dtype:
|
439 |
-
class_label:
|
440 |
-
names:
|
441 |
-
'0': entailment
|
442 |
-
'1': neutral
|
443 |
-
'2': contradiction
|
444 |
-
splits:
|
445 |
-
- name: train
|
446 |
-
num_bytes: 1581474731
|
447 |
-
num_examples: 392702
|
448 |
-
- name: test
|
449 |
-
num_bytes: 19387508
|
450 |
-
num_examples: 5010
|
451 |
-
- name: validation
|
452 |
-
num_bytes: 9566255
|
453 |
-
num_examples: 2490
|
454 |
-
download_size: 483963712
|
455 |
-
dataset_size: 1610428494
|
456 |
---
|
457 |
|
458 |
# Dataset Card for "xnli"
|
|
|
18 |
paperswithcode_id: xnli
|
19 |
pretty_name: Cross-lingual Natural Language Inference
|
20 |
dataset_info:
|
21 |
+
- config_name: all_languages
|
22 |
+
features:
|
23 |
+
- name: premise
|
24 |
+
dtype:
|
25 |
+
translation:
|
26 |
+
languages:
|
27 |
+
- ar
|
28 |
+
- bg
|
29 |
+
- de
|
30 |
+
- el
|
31 |
+
- en
|
32 |
+
- es
|
33 |
+
- fr
|
34 |
+
- hi
|
35 |
+
- ru
|
36 |
+
- sw
|
37 |
+
- th
|
38 |
+
- tr
|
39 |
+
- ur
|
40 |
+
- vi
|
41 |
+
- zh
|
42 |
+
- name: hypothesis
|
43 |
+
dtype:
|
44 |
+
translation_variable_languages:
|
45 |
+
languages:
|
46 |
+
- ar
|
47 |
+
- bg
|
48 |
+
- de
|
49 |
+
- el
|
50 |
+
- en
|
51 |
+
- es
|
52 |
+
- fr
|
53 |
+
- hi
|
54 |
+
- ru
|
55 |
+
- sw
|
56 |
+
- th
|
57 |
+
- tr
|
58 |
+
- ur
|
59 |
+
- vi
|
60 |
+
- zh
|
61 |
+
num_languages: 15
|
62 |
+
- name: label
|
63 |
+
dtype:
|
64 |
+
class_label:
|
65 |
+
names:
|
66 |
+
'0': entailment
|
67 |
+
'1': neutral
|
68 |
+
'2': contradiction
|
69 |
+
splits:
|
70 |
+
- name: train
|
71 |
+
num_bytes: 1581474731
|
72 |
+
num_examples: 392702
|
73 |
+
- name: test
|
74 |
+
num_bytes: 19387508
|
75 |
+
num_examples: 5010
|
76 |
+
- name: validation
|
77 |
+
num_bytes: 9566255
|
78 |
+
num_examples: 2490
|
79 |
+
download_size: 483963712
|
80 |
+
dataset_size: 1610428494
|
81 |
- config_name: ar
|
82 |
features:
|
83 |
- name: premise
|
|
|
93 |
'2': contradiction
|
94 |
splits:
|
95 |
- name: train
|
96 |
+
num_bytes: 107399614
|
97 |
num_examples: 392702
|
98 |
- name: test
|
99 |
+
num_bytes: 1294553
|
100 |
num_examples: 5010
|
101 |
- name: validation
|
102 |
+
num_bytes: 633001
|
103 |
num_examples: 2490
|
104 |
+
download_size: 59215902
|
105 |
+
dataset_size: 109327168
|
106 |
- config_name: bg
|
107 |
features:
|
108 |
- name: premise
|
|
|
453 |
num_examples: 2490
|
454 |
download_size: 483963712
|
455 |
dataset_size: 73387957
|
456 |
+
configs:
|
457 |
+
- config_name: ar
|
458 |
+
data_files:
|
459 |
+
- split: train
|
460 |
+
path: ar/train-*
|
461 |
+
- split: test
|
462 |
+
path: ar/test-*
|
463 |
+
- split: validation
|
464 |
+
path: ar/validation-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
---
|
466 |
|
467 |
# Dataset Card for "xnli"
|
ar/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89521231aa5f8404c46fcc5d421a9453819ca48bb99590680fa31fb8c82cf8bd
|
3 |
+
size 391980
|
ar/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a27850bd0e20411f7c08e7c2247413c0050669090ef23cb5263d138be937e89
|
3 |
+
size 58630165
|
ar/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df098db4682a6a97dc4a08be518b60e58112f0e32df2d4c4c933e34db577cd3
|
3 |
+
size 193757
|
dataset_infos.json
CHANGED
@@ -1 +1,1202 @@
|
|
1 |
-
{"ar": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ar", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 107399934, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1294561, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 633009, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 109327504, "size_in_bytes": 593291216}, "bg": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "bg", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 125973545, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1573042, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 774069, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 128320656, "size_in_bytes": 612284368}, "de": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "de", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 84684460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 996496, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 494612, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 86175568, "size_in_bytes": 570139280}, "el": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "el", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 139753678, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1704793, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 841234, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 142299705, "size_in_bytes": 626263417}, "en": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 74444346, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 875142, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 433471, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 75752959, "size_in_bytes": 559716671}, "es": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "es", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 81383604, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 969821, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 478430, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 82831855, "size_in_bytes": 566795567}, "fr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "fr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 85809099, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1029247, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 510112, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 87348458, "size_in_bytes": 571312170}, "hi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "hi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 170594284, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2073081, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1023923, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 173691288, "size_in_bytes": 657655000}, "ru": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 129859935, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1603474, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 786450, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 132249859, "size_in_bytes": 616213571}, "sw": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "sw", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 69286045, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 871659, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 429858, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 70587562, "size_in_bytes": 554551274}, "th": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "th", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 176063212, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 2147023, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 1061168, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 179271403, "size_in_bytes": 663235115}, "tr": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "tr", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71637460, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 934942, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 459316, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73031718, "size_in_bytes": 556995430}, "ur": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "ur", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96441806, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1416249, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 699960, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 98558015, "size_in_bytes": 582521727}, "vi": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "vi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 101417750, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 1190225, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 590688, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 103198663, "size_in_bytes": 587162375}, "zh": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "zh", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 72225161, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 777937, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 384859, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 73387957, "size_in_bytes": 557351669}, "all_languages": {"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n", "citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}", "homepage": "https://www.nyu.edu/projects/bowman/xnli/", "license": "", "features": {"premise": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "id": null, "_type": "Translation"}, "hypothesis": {"languages": ["ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"], "num_languages": 15, "id": null, "_type": "TranslationVariableLanguages"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xnli", "config_name": "all_languages", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1581474731, "num_examples": 392702, "dataset_name": "xnli"}, "test": {"name": "test", "num_bytes": 19387508, "num_examples": 5010, "dataset_name": "xnli"}, "validation": {"name": "validation", "num_bytes": 9566255, "num_examples": 2490, "dataset_name": "xnli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {"num_bytes": 466098360, "checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"}, "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {"num_bytes": 17865352, "checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"}}, "download_size": 483963712, "post_processing_size": null, "dataset_size": 1610428494, "size_in_bytes": 2094392206}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ar": {
|
3 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
4 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
5 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"premise": {
|
9 |
+
"dtype": "string",
|
10 |
+
"_type": "Value"
|
11 |
+
},
|
12 |
+
"hypothesis": {
|
13 |
+
"dtype": "string",
|
14 |
+
"_type": "Value"
|
15 |
+
},
|
16 |
+
"label": {
|
17 |
+
"names": [
|
18 |
+
"entailment",
|
19 |
+
"neutral",
|
20 |
+
"contradiction"
|
21 |
+
],
|
22 |
+
"_type": "ClassLabel"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"builder_name": "xnli",
|
26 |
+
"dataset_name": "xnli",
|
27 |
+
"config_name": "ar",
|
28 |
+
"version": {
|
29 |
+
"version_str": "1.1.0",
|
30 |
+
"description": "",
|
31 |
+
"major": 1,
|
32 |
+
"minor": 1,
|
33 |
+
"patch": 0
|
34 |
+
},
|
35 |
+
"splits": {
|
36 |
+
"train": {
|
37 |
+
"name": "train",
|
38 |
+
"num_bytes": 107399614,
|
39 |
+
"num_examples": 392702,
|
40 |
+
"dataset_name": null
|
41 |
+
},
|
42 |
+
"test": {
|
43 |
+
"name": "test",
|
44 |
+
"num_bytes": 1294553,
|
45 |
+
"num_examples": 5010,
|
46 |
+
"dataset_name": null
|
47 |
+
},
|
48 |
+
"validation": {
|
49 |
+
"name": "validation",
|
50 |
+
"num_bytes": 633001,
|
51 |
+
"num_examples": 2490,
|
52 |
+
"dataset_name": null
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"download_size": 59215902,
|
56 |
+
"dataset_size": 109327168,
|
57 |
+
"size_in_bytes": 168543070
|
58 |
+
},
|
59 |
+
"bg": {
|
60 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
61 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
62 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
63 |
+
"license": "",
|
64 |
+
"features": {
|
65 |
+
"premise": {
|
66 |
+
"dtype": "string",
|
67 |
+
"id": null,
|
68 |
+
"_type": "Value"
|
69 |
+
},
|
70 |
+
"hypothesis": {
|
71 |
+
"dtype": "string",
|
72 |
+
"id": null,
|
73 |
+
"_type": "Value"
|
74 |
+
},
|
75 |
+
"label": {
|
76 |
+
"num_classes": 3,
|
77 |
+
"names": [
|
78 |
+
"entailment",
|
79 |
+
"neutral",
|
80 |
+
"contradiction"
|
81 |
+
],
|
82 |
+
"names_file": null,
|
83 |
+
"id": null,
|
84 |
+
"_type": "ClassLabel"
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"post_processed": null,
|
88 |
+
"supervised_keys": null,
|
89 |
+
"builder_name": "xnli",
|
90 |
+
"config_name": "bg",
|
91 |
+
"version": {
|
92 |
+
"version_str": "1.1.0",
|
93 |
+
"description": "",
|
94 |
+
"major": 1,
|
95 |
+
"minor": 1,
|
96 |
+
"patch": 0
|
97 |
+
},
|
98 |
+
"splits": {
|
99 |
+
"train": {
|
100 |
+
"name": "train",
|
101 |
+
"num_bytes": 125973545,
|
102 |
+
"num_examples": 392702,
|
103 |
+
"dataset_name": "xnli"
|
104 |
+
},
|
105 |
+
"test": {
|
106 |
+
"name": "test",
|
107 |
+
"num_bytes": 1573042,
|
108 |
+
"num_examples": 5010,
|
109 |
+
"dataset_name": "xnli"
|
110 |
+
},
|
111 |
+
"validation": {
|
112 |
+
"name": "validation",
|
113 |
+
"num_bytes": 774069,
|
114 |
+
"num_examples": 2490,
|
115 |
+
"dataset_name": "xnli"
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"download_checksums": {
|
119 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
120 |
+
"num_bytes": 466098360,
|
121 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
122 |
+
},
|
123 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
124 |
+
"num_bytes": 17865352,
|
125 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
126 |
+
}
|
127 |
+
},
|
128 |
+
"download_size": 483963712,
|
129 |
+
"post_processing_size": null,
|
130 |
+
"dataset_size": 128320656,
|
131 |
+
"size_in_bytes": 612284368
|
132 |
+
},
|
133 |
+
"de": {
|
134 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
135 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
136 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
137 |
+
"license": "",
|
138 |
+
"features": {
|
139 |
+
"premise": {
|
140 |
+
"dtype": "string",
|
141 |
+
"id": null,
|
142 |
+
"_type": "Value"
|
143 |
+
},
|
144 |
+
"hypothesis": {
|
145 |
+
"dtype": "string",
|
146 |
+
"id": null,
|
147 |
+
"_type": "Value"
|
148 |
+
},
|
149 |
+
"label": {
|
150 |
+
"num_classes": 3,
|
151 |
+
"names": [
|
152 |
+
"entailment",
|
153 |
+
"neutral",
|
154 |
+
"contradiction"
|
155 |
+
],
|
156 |
+
"names_file": null,
|
157 |
+
"id": null,
|
158 |
+
"_type": "ClassLabel"
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"post_processed": null,
|
162 |
+
"supervised_keys": null,
|
163 |
+
"builder_name": "xnli",
|
164 |
+
"config_name": "de",
|
165 |
+
"version": {
|
166 |
+
"version_str": "1.1.0",
|
167 |
+
"description": "",
|
168 |
+
"major": 1,
|
169 |
+
"minor": 1,
|
170 |
+
"patch": 0
|
171 |
+
},
|
172 |
+
"splits": {
|
173 |
+
"train": {
|
174 |
+
"name": "train",
|
175 |
+
"num_bytes": 84684460,
|
176 |
+
"num_examples": 392702,
|
177 |
+
"dataset_name": "xnli"
|
178 |
+
},
|
179 |
+
"test": {
|
180 |
+
"name": "test",
|
181 |
+
"num_bytes": 996496,
|
182 |
+
"num_examples": 5010,
|
183 |
+
"dataset_name": "xnli"
|
184 |
+
},
|
185 |
+
"validation": {
|
186 |
+
"name": "validation",
|
187 |
+
"num_bytes": 494612,
|
188 |
+
"num_examples": 2490,
|
189 |
+
"dataset_name": "xnli"
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"download_checksums": {
|
193 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
194 |
+
"num_bytes": 466098360,
|
195 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
196 |
+
},
|
197 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
198 |
+
"num_bytes": 17865352,
|
199 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
200 |
+
}
|
201 |
+
},
|
202 |
+
"download_size": 483963712,
|
203 |
+
"post_processing_size": null,
|
204 |
+
"dataset_size": 86175568,
|
205 |
+
"size_in_bytes": 570139280
|
206 |
+
},
|
207 |
+
"el": {
|
208 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
209 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
210 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
211 |
+
"license": "",
|
212 |
+
"features": {
|
213 |
+
"premise": {
|
214 |
+
"dtype": "string",
|
215 |
+
"id": null,
|
216 |
+
"_type": "Value"
|
217 |
+
},
|
218 |
+
"hypothesis": {
|
219 |
+
"dtype": "string",
|
220 |
+
"id": null,
|
221 |
+
"_type": "Value"
|
222 |
+
},
|
223 |
+
"label": {
|
224 |
+
"num_classes": 3,
|
225 |
+
"names": [
|
226 |
+
"entailment",
|
227 |
+
"neutral",
|
228 |
+
"contradiction"
|
229 |
+
],
|
230 |
+
"names_file": null,
|
231 |
+
"id": null,
|
232 |
+
"_type": "ClassLabel"
|
233 |
+
}
|
234 |
+
},
|
235 |
+
"post_processed": null,
|
236 |
+
"supervised_keys": null,
|
237 |
+
"builder_name": "xnli",
|
238 |
+
"config_name": "el",
|
239 |
+
"version": {
|
240 |
+
"version_str": "1.1.0",
|
241 |
+
"description": "",
|
242 |
+
"major": 1,
|
243 |
+
"minor": 1,
|
244 |
+
"patch": 0
|
245 |
+
},
|
246 |
+
"splits": {
|
247 |
+
"train": {
|
248 |
+
"name": "train",
|
249 |
+
"num_bytes": 139753678,
|
250 |
+
"num_examples": 392702,
|
251 |
+
"dataset_name": "xnli"
|
252 |
+
},
|
253 |
+
"test": {
|
254 |
+
"name": "test",
|
255 |
+
"num_bytes": 1704793,
|
256 |
+
"num_examples": 5010,
|
257 |
+
"dataset_name": "xnli"
|
258 |
+
},
|
259 |
+
"validation": {
|
260 |
+
"name": "validation",
|
261 |
+
"num_bytes": 841234,
|
262 |
+
"num_examples": 2490,
|
263 |
+
"dataset_name": "xnli"
|
264 |
+
}
|
265 |
+
},
|
266 |
+
"download_checksums": {
|
267 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
268 |
+
"num_bytes": 466098360,
|
269 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
270 |
+
},
|
271 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
272 |
+
"num_bytes": 17865352,
|
273 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
274 |
+
}
|
275 |
+
},
|
276 |
+
"download_size": 483963712,
|
277 |
+
"post_processing_size": null,
|
278 |
+
"dataset_size": 142299705,
|
279 |
+
"size_in_bytes": 626263417
|
280 |
+
},
|
281 |
+
"en": {
|
282 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
283 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
284 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
285 |
+
"license": "",
|
286 |
+
"features": {
|
287 |
+
"premise": {
|
288 |
+
"dtype": "string",
|
289 |
+
"id": null,
|
290 |
+
"_type": "Value"
|
291 |
+
},
|
292 |
+
"hypothesis": {
|
293 |
+
"dtype": "string",
|
294 |
+
"id": null,
|
295 |
+
"_type": "Value"
|
296 |
+
},
|
297 |
+
"label": {
|
298 |
+
"num_classes": 3,
|
299 |
+
"names": [
|
300 |
+
"entailment",
|
301 |
+
"neutral",
|
302 |
+
"contradiction"
|
303 |
+
],
|
304 |
+
"names_file": null,
|
305 |
+
"id": null,
|
306 |
+
"_type": "ClassLabel"
|
307 |
+
}
|
308 |
+
},
|
309 |
+
"post_processed": null,
|
310 |
+
"supervised_keys": null,
|
311 |
+
"builder_name": "xnli",
|
312 |
+
"config_name": "en",
|
313 |
+
"version": {
|
314 |
+
"version_str": "1.1.0",
|
315 |
+
"description": "",
|
316 |
+
"major": 1,
|
317 |
+
"minor": 1,
|
318 |
+
"patch": 0
|
319 |
+
},
|
320 |
+
"splits": {
|
321 |
+
"train": {
|
322 |
+
"name": "train",
|
323 |
+
"num_bytes": 74444346,
|
324 |
+
"num_examples": 392702,
|
325 |
+
"dataset_name": "xnli"
|
326 |
+
},
|
327 |
+
"test": {
|
328 |
+
"name": "test",
|
329 |
+
"num_bytes": 875142,
|
330 |
+
"num_examples": 5010,
|
331 |
+
"dataset_name": "xnli"
|
332 |
+
},
|
333 |
+
"validation": {
|
334 |
+
"name": "validation",
|
335 |
+
"num_bytes": 433471,
|
336 |
+
"num_examples": 2490,
|
337 |
+
"dataset_name": "xnli"
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"download_checksums": {
|
341 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
342 |
+
"num_bytes": 466098360,
|
343 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
344 |
+
},
|
345 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
346 |
+
"num_bytes": 17865352,
|
347 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
348 |
+
}
|
349 |
+
},
|
350 |
+
"download_size": 483963712,
|
351 |
+
"post_processing_size": null,
|
352 |
+
"dataset_size": 75752959,
|
353 |
+
"size_in_bytes": 559716671
|
354 |
+
},
|
355 |
+
"es": {
|
356 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
357 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
358 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
359 |
+
"license": "",
|
360 |
+
"features": {
|
361 |
+
"premise": {
|
362 |
+
"dtype": "string",
|
363 |
+
"id": null,
|
364 |
+
"_type": "Value"
|
365 |
+
},
|
366 |
+
"hypothesis": {
|
367 |
+
"dtype": "string",
|
368 |
+
"id": null,
|
369 |
+
"_type": "Value"
|
370 |
+
},
|
371 |
+
"label": {
|
372 |
+
"num_classes": 3,
|
373 |
+
"names": [
|
374 |
+
"entailment",
|
375 |
+
"neutral",
|
376 |
+
"contradiction"
|
377 |
+
],
|
378 |
+
"names_file": null,
|
379 |
+
"id": null,
|
380 |
+
"_type": "ClassLabel"
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"post_processed": null,
|
384 |
+
"supervised_keys": null,
|
385 |
+
"builder_name": "xnli",
|
386 |
+
"config_name": "es",
|
387 |
+
"version": {
|
388 |
+
"version_str": "1.1.0",
|
389 |
+
"description": "",
|
390 |
+
"major": 1,
|
391 |
+
"minor": 1,
|
392 |
+
"patch": 0
|
393 |
+
},
|
394 |
+
"splits": {
|
395 |
+
"train": {
|
396 |
+
"name": "train",
|
397 |
+
"num_bytes": 81383604,
|
398 |
+
"num_examples": 392702,
|
399 |
+
"dataset_name": "xnli"
|
400 |
+
},
|
401 |
+
"test": {
|
402 |
+
"name": "test",
|
403 |
+
"num_bytes": 969821,
|
404 |
+
"num_examples": 5010,
|
405 |
+
"dataset_name": "xnli"
|
406 |
+
},
|
407 |
+
"validation": {
|
408 |
+
"name": "validation",
|
409 |
+
"num_bytes": 478430,
|
410 |
+
"num_examples": 2490,
|
411 |
+
"dataset_name": "xnli"
|
412 |
+
}
|
413 |
+
},
|
414 |
+
"download_checksums": {
|
415 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
416 |
+
"num_bytes": 466098360,
|
417 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
418 |
+
},
|
419 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
420 |
+
"num_bytes": 17865352,
|
421 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
422 |
+
}
|
423 |
+
},
|
424 |
+
"download_size": 483963712,
|
425 |
+
"post_processing_size": null,
|
426 |
+
"dataset_size": 82831855,
|
427 |
+
"size_in_bytes": 566795567
|
428 |
+
},
|
429 |
+
"fr": {
|
430 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
431 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
432 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
433 |
+
"license": "",
|
434 |
+
"features": {
|
435 |
+
"premise": {
|
436 |
+
"dtype": "string",
|
437 |
+
"id": null,
|
438 |
+
"_type": "Value"
|
439 |
+
},
|
440 |
+
"hypothesis": {
|
441 |
+
"dtype": "string",
|
442 |
+
"id": null,
|
443 |
+
"_type": "Value"
|
444 |
+
},
|
445 |
+
"label": {
|
446 |
+
"num_classes": 3,
|
447 |
+
"names": [
|
448 |
+
"entailment",
|
449 |
+
"neutral",
|
450 |
+
"contradiction"
|
451 |
+
],
|
452 |
+
"names_file": null,
|
453 |
+
"id": null,
|
454 |
+
"_type": "ClassLabel"
|
455 |
+
}
|
456 |
+
},
|
457 |
+
"post_processed": null,
|
458 |
+
"supervised_keys": null,
|
459 |
+
"builder_name": "xnli",
|
460 |
+
"config_name": "fr",
|
461 |
+
"version": {
|
462 |
+
"version_str": "1.1.0",
|
463 |
+
"description": "",
|
464 |
+
"major": 1,
|
465 |
+
"minor": 1,
|
466 |
+
"patch": 0
|
467 |
+
},
|
468 |
+
"splits": {
|
469 |
+
"train": {
|
470 |
+
"name": "train",
|
471 |
+
"num_bytes": 85809099,
|
472 |
+
"num_examples": 392702,
|
473 |
+
"dataset_name": "xnli"
|
474 |
+
},
|
475 |
+
"test": {
|
476 |
+
"name": "test",
|
477 |
+
"num_bytes": 1029247,
|
478 |
+
"num_examples": 5010,
|
479 |
+
"dataset_name": "xnli"
|
480 |
+
},
|
481 |
+
"validation": {
|
482 |
+
"name": "validation",
|
483 |
+
"num_bytes": 510112,
|
484 |
+
"num_examples": 2490,
|
485 |
+
"dataset_name": "xnli"
|
486 |
+
}
|
487 |
+
},
|
488 |
+
"download_checksums": {
|
489 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
490 |
+
"num_bytes": 466098360,
|
491 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
492 |
+
},
|
493 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
494 |
+
"num_bytes": 17865352,
|
495 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
496 |
+
}
|
497 |
+
},
|
498 |
+
"download_size": 483963712,
|
499 |
+
"post_processing_size": null,
|
500 |
+
"dataset_size": 87348458,
|
501 |
+
"size_in_bytes": 571312170
|
502 |
+
},
|
503 |
+
"hi": {
|
504 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
505 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
506 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
507 |
+
"license": "",
|
508 |
+
"features": {
|
509 |
+
"premise": {
|
510 |
+
"dtype": "string",
|
511 |
+
"id": null,
|
512 |
+
"_type": "Value"
|
513 |
+
},
|
514 |
+
"hypothesis": {
|
515 |
+
"dtype": "string",
|
516 |
+
"id": null,
|
517 |
+
"_type": "Value"
|
518 |
+
},
|
519 |
+
"label": {
|
520 |
+
"num_classes": 3,
|
521 |
+
"names": [
|
522 |
+
"entailment",
|
523 |
+
"neutral",
|
524 |
+
"contradiction"
|
525 |
+
],
|
526 |
+
"names_file": null,
|
527 |
+
"id": null,
|
528 |
+
"_type": "ClassLabel"
|
529 |
+
}
|
530 |
+
},
|
531 |
+
"post_processed": null,
|
532 |
+
"supervised_keys": null,
|
533 |
+
"builder_name": "xnli",
|
534 |
+
"config_name": "hi",
|
535 |
+
"version": {
|
536 |
+
"version_str": "1.1.0",
|
537 |
+
"description": "",
|
538 |
+
"major": 1,
|
539 |
+
"minor": 1,
|
540 |
+
"patch": 0
|
541 |
+
},
|
542 |
+
"splits": {
|
543 |
+
"train": {
|
544 |
+
"name": "train",
|
545 |
+
"num_bytes": 170594284,
|
546 |
+
"num_examples": 392702,
|
547 |
+
"dataset_name": "xnli"
|
548 |
+
},
|
549 |
+
"test": {
|
550 |
+
"name": "test",
|
551 |
+
"num_bytes": 2073081,
|
552 |
+
"num_examples": 5010,
|
553 |
+
"dataset_name": "xnli"
|
554 |
+
},
|
555 |
+
"validation": {
|
556 |
+
"name": "validation",
|
557 |
+
"num_bytes": 1023923,
|
558 |
+
"num_examples": 2490,
|
559 |
+
"dataset_name": "xnli"
|
560 |
+
}
|
561 |
+
},
|
562 |
+
"download_checksums": {
|
563 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
564 |
+
"num_bytes": 466098360,
|
565 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
566 |
+
},
|
567 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
568 |
+
"num_bytes": 17865352,
|
569 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
570 |
+
}
|
571 |
+
},
|
572 |
+
"download_size": 483963712,
|
573 |
+
"post_processing_size": null,
|
574 |
+
"dataset_size": 173691288,
|
575 |
+
"size_in_bytes": 657655000
|
576 |
+
},
|
577 |
+
"ru": {
|
578 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
579 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
580 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
581 |
+
"license": "",
|
582 |
+
"features": {
|
583 |
+
"premise": {
|
584 |
+
"dtype": "string",
|
585 |
+
"id": null,
|
586 |
+
"_type": "Value"
|
587 |
+
},
|
588 |
+
"hypothesis": {
|
589 |
+
"dtype": "string",
|
590 |
+
"id": null,
|
591 |
+
"_type": "Value"
|
592 |
+
},
|
593 |
+
"label": {
|
594 |
+
"num_classes": 3,
|
595 |
+
"names": [
|
596 |
+
"entailment",
|
597 |
+
"neutral",
|
598 |
+
"contradiction"
|
599 |
+
],
|
600 |
+
"names_file": null,
|
601 |
+
"id": null,
|
602 |
+
"_type": "ClassLabel"
|
603 |
+
}
|
604 |
+
},
|
605 |
+
"post_processed": null,
|
606 |
+
"supervised_keys": null,
|
607 |
+
"builder_name": "xnli",
|
608 |
+
"config_name": "ru",
|
609 |
+
"version": {
|
610 |
+
"version_str": "1.1.0",
|
611 |
+
"description": "",
|
612 |
+
"major": 1,
|
613 |
+
"minor": 1,
|
614 |
+
"patch": 0
|
615 |
+
},
|
616 |
+
"splits": {
|
617 |
+
"train": {
|
618 |
+
"name": "train",
|
619 |
+
"num_bytes": 129859935,
|
620 |
+
"num_examples": 392702,
|
621 |
+
"dataset_name": "xnli"
|
622 |
+
},
|
623 |
+
"test": {
|
624 |
+
"name": "test",
|
625 |
+
"num_bytes": 1603474,
|
626 |
+
"num_examples": 5010,
|
627 |
+
"dataset_name": "xnli"
|
628 |
+
},
|
629 |
+
"validation": {
|
630 |
+
"name": "validation",
|
631 |
+
"num_bytes": 786450,
|
632 |
+
"num_examples": 2490,
|
633 |
+
"dataset_name": "xnli"
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"download_checksums": {
|
637 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
638 |
+
"num_bytes": 466098360,
|
639 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
640 |
+
},
|
641 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
642 |
+
"num_bytes": 17865352,
|
643 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
644 |
+
}
|
645 |
+
},
|
646 |
+
"download_size": 483963712,
|
647 |
+
"post_processing_size": null,
|
648 |
+
"dataset_size": 132249859,
|
649 |
+
"size_in_bytes": 616213571
|
650 |
+
},
|
651 |
+
"sw": {
|
652 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
653 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
654 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
655 |
+
"license": "",
|
656 |
+
"features": {
|
657 |
+
"premise": {
|
658 |
+
"dtype": "string",
|
659 |
+
"id": null,
|
660 |
+
"_type": "Value"
|
661 |
+
},
|
662 |
+
"hypothesis": {
|
663 |
+
"dtype": "string",
|
664 |
+
"id": null,
|
665 |
+
"_type": "Value"
|
666 |
+
},
|
667 |
+
"label": {
|
668 |
+
"num_classes": 3,
|
669 |
+
"names": [
|
670 |
+
"entailment",
|
671 |
+
"neutral",
|
672 |
+
"contradiction"
|
673 |
+
],
|
674 |
+
"names_file": null,
|
675 |
+
"id": null,
|
676 |
+
"_type": "ClassLabel"
|
677 |
+
}
|
678 |
+
},
|
679 |
+
"post_processed": null,
|
680 |
+
"supervised_keys": null,
|
681 |
+
"builder_name": "xnli",
|
682 |
+
"config_name": "sw",
|
683 |
+
"version": {
|
684 |
+
"version_str": "1.1.0",
|
685 |
+
"description": "",
|
686 |
+
"major": 1,
|
687 |
+
"minor": 1,
|
688 |
+
"patch": 0
|
689 |
+
},
|
690 |
+
"splits": {
|
691 |
+
"train": {
|
692 |
+
"name": "train",
|
693 |
+
"num_bytes": 69286045,
|
694 |
+
"num_examples": 392702,
|
695 |
+
"dataset_name": "xnli"
|
696 |
+
},
|
697 |
+
"test": {
|
698 |
+
"name": "test",
|
699 |
+
"num_bytes": 871659,
|
700 |
+
"num_examples": 5010,
|
701 |
+
"dataset_name": "xnli"
|
702 |
+
},
|
703 |
+
"validation": {
|
704 |
+
"name": "validation",
|
705 |
+
"num_bytes": 429858,
|
706 |
+
"num_examples": 2490,
|
707 |
+
"dataset_name": "xnli"
|
708 |
+
}
|
709 |
+
},
|
710 |
+
"download_checksums": {
|
711 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
712 |
+
"num_bytes": 466098360,
|
713 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
714 |
+
},
|
715 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
716 |
+
"num_bytes": 17865352,
|
717 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
718 |
+
}
|
719 |
+
},
|
720 |
+
"download_size": 483963712,
|
721 |
+
"post_processing_size": null,
|
722 |
+
"dataset_size": 70587562,
|
723 |
+
"size_in_bytes": 554551274
|
724 |
+
},
|
725 |
+
"th": {
|
726 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
727 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
728 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
729 |
+
"license": "",
|
730 |
+
"features": {
|
731 |
+
"premise": {
|
732 |
+
"dtype": "string",
|
733 |
+
"id": null,
|
734 |
+
"_type": "Value"
|
735 |
+
},
|
736 |
+
"hypothesis": {
|
737 |
+
"dtype": "string",
|
738 |
+
"id": null,
|
739 |
+
"_type": "Value"
|
740 |
+
},
|
741 |
+
"label": {
|
742 |
+
"num_classes": 3,
|
743 |
+
"names": [
|
744 |
+
"entailment",
|
745 |
+
"neutral",
|
746 |
+
"contradiction"
|
747 |
+
],
|
748 |
+
"names_file": null,
|
749 |
+
"id": null,
|
750 |
+
"_type": "ClassLabel"
|
751 |
+
}
|
752 |
+
},
|
753 |
+
"post_processed": null,
|
754 |
+
"supervised_keys": null,
|
755 |
+
"builder_name": "xnli",
|
756 |
+
"config_name": "th",
|
757 |
+
"version": {
|
758 |
+
"version_str": "1.1.0",
|
759 |
+
"description": "",
|
760 |
+
"major": 1,
|
761 |
+
"minor": 1,
|
762 |
+
"patch": 0
|
763 |
+
},
|
764 |
+
"splits": {
|
765 |
+
"train": {
|
766 |
+
"name": "train",
|
767 |
+
"num_bytes": 176063212,
|
768 |
+
"num_examples": 392702,
|
769 |
+
"dataset_name": "xnli"
|
770 |
+
},
|
771 |
+
"test": {
|
772 |
+
"name": "test",
|
773 |
+
"num_bytes": 2147023,
|
774 |
+
"num_examples": 5010,
|
775 |
+
"dataset_name": "xnli"
|
776 |
+
},
|
777 |
+
"validation": {
|
778 |
+
"name": "validation",
|
779 |
+
"num_bytes": 1061168,
|
780 |
+
"num_examples": 2490,
|
781 |
+
"dataset_name": "xnli"
|
782 |
+
}
|
783 |
+
},
|
784 |
+
"download_checksums": {
|
785 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
786 |
+
"num_bytes": 466098360,
|
787 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
788 |
+
},
|
789 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
790 |
+
"num_bytes": 17865352,
|
791 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
792 |
+
}
|
793 |
+
},
|
794 |
+
"download_size": 483963712,
|
795 |
+
"post_processing_size": null,
|
796 |
+
"dataset_size": 179271403,
|
797 |
+
"size_in_bytes": 663235115
|
798 |
+
},
|
799 |
+
"tr": {
|
800 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
801 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
802 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
803 |
+
"license": "",
|
804 |
+
"features": {
|
805 |
+
"premise": {
|
806 |
+
"dtype": "string",
|
807 |
+
"id": null,
|
808 |
+
"_type": "Value"
|
809 |
+
},
|
810 |
+
"hypothesis": {
|
811 |
+
"dtype": "string",
|
812 |
+
"id": null,
|
813 |
+
"_type": "Value"
|
814 |
+
},
|
815 |
+
"label": {
|
816 |
+
"num_classes": 3,
|
817 |
+
"names": [
|
818 |
+
"entailment",
|
819 |
+
"neutral",
|
820 |
+
"contradiction"
|
821 |
+
],
|
822 |
+
"names_file": null,
|
823 |
+
"id": null,
|
824 |
+
"_type": "ClassLabel"
|
825 |
+
}
|
826 |
+
},
|
827 |
+
"post_processed": null,
|
828 |
+
"supervised_keys": null,
|
829 |
+
"builder_name": "xnli",
|
830 |
+
"config_name": "tr",
|
831 |
+
"version": {
|
832 |
+
"version_str": "1.1.0",
|
833 |
+
"description": "",
|
834 |
+
"major": 1,
|
835 |
+
"minor": 1,
|
836 |
+
"patch": 0
|
837 |
+
},
|
838 |
+
"splits": {
|
839 |
+
"train": {
|
840 |
+
"name": "train",
|
841 |
+
"num_bytes": 71637460,
|
842 |
+
"num_examples": 392702,
|
843 |
+
"dataset_name": "xnli"
|
844 |
+
},
|
845 |
+
"test": {
|
846 |
+
"name": "test",
|
847 |
+
"num_bytes": 934942,
|
848 |
+
"num_examples": 5010,
|
849 |
+
"dataset_name": "xnli"
|
850 |
+
},
|
851 |
+
"validation": {
|
852 |
+
"name": "validation",
|
853 |
+
"num_bytes": 459316,
|
854 |
+
"num_examples": 2490,
|
855 |
+
"dataset_name": "xnli"
|
856 |
+
}
|
857 |
+
},
|
858 |
+
"download_checksums": {
|
859 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
860 |
+
"num_bytes": 466098360,
|
861 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
862 |
+
},
|
863 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
864 |
+
"num_bytes": 17865352,
|
865 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
866 |
+
}
|
867 |
+
},
|
868 |
+
"download_size": 483963712,
|
869 |
+
"post_processing_size": null,
|
870 |
+
"dataset_size": 73031718,
|
871 |
+
"size_in_bytes": 556995430
|
872 |
+
},
|
873 |
+
"ur": {
|
874 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
875 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
876 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
877 |
+
"license": "",
|
878 |
+
"features": {
|
879 |
+
"premise": {
|
880 |
+
"dtype": "string",
|
881 |
+
"id": null,
|
882 |
+
"_type": "Value"
|
883 |
+
},
|
884 |
+
"hypothesis": {
|
885 |
+
"dtype": "string",
|
886 |
+
"id": null,
|
887 |
+
"_type": "Value"
|
888 |
+
},
|
889 |
+
"label": {
|
890 |
+
"num_classes": 3,
|
891 |
+
"names": [
|
892 |
+
"entailment",
|
893 |
+
"neutral",
|
894 |
+
"contradiction"
|
895 |
+
],
|
896 |
+
"names_file": null,
|
897 |
+
"id": null,
|
898 |
+
"_type": "ClassLabel"
|
899 |
+
}
|
900 |
+
},
|
901 |
+
"post_processed": null,
|
902 |
+
"supervised_keys": null,
|
903 |
+
"builder_name": "xnli",
|
904 |
+
"config_name": "ur",
|
905 |
+
"version": {
|
906 |
+
"version_str": "1.1.0",
|
907 |
+
"description": "",
|
908 |
+
"major": 1,
|
909 |
+
"minor": 1,
|
910 |
+
"patch": 0
|
911 |
+
},
|
912 |
+
"splits": {
|
913 |
+
"train": {
|
914 |
+
"name": "train",
|
915 |
+
"num_bytes": 96441806,
|
916 |
+
"num_examples": 392702,
|
917 |
+
"dataset_name": "xnli"
|
918 |
+
},
|
919 |
+
"test": {
|
920 |
+
"name": "test",
|
921 |
+
"num_bytes": 1416249,
|
922 |
+
"num_examples": 5010,
|
923 |
+
"dataset_name": "xnli"
|
924 |
+
},
|
925 |
+
"validation": {
|
926 |
+
"name": "validation",
|
927 |
+
"num_bytes": 699960,
|
928 |
+
"num_examples": 2490,
|
929 |
+
"dataset_name": "xnli"
|
930 |
+
}
|
931 |
+
},
|
932 |
+
"download_checksums": {
|
933 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
934 |
+
"num_bytes": 466098360,
|
935 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
936 |
+
},
|
937 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
938 |
+
"num_bytes": 17865352,
|
939 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
940 |
+
}
|
941 |
+
},
|
942 |
+
"download_size": 483963712,
|
943 |
+
"post_processing_size": null,
|
944 |
+
"dataset_size": 98558015,
|
945 |
+
"size_in_bytes": 582521727
|
946 |
+
},
|
947 |
+
"vi": {
|
948 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
949 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
950 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
951 |
+
"license": "",
|
952 |
+
"features": {
|
953 |
+
"premise": {
|
954 |
+
"dtype": "string",
|
955 |
+
"id": null,
|
956 |
+
"_type": "Value"
|
957 |
+
},
|
958 |
+
"hypothesis": {
|
959 |
+
"dtype": "string",
|
960 |
+
"id": null,
|
961 |
+
"_type": "Value"
|
962 |
+
},
|
963 |
+
"label": {
|
964 |
+
"num_classes": 3,
|
965 |
+
"names": [
|
966 |
+
"entailment",
|
967 |
+
"neutral",
|
968 |
+
"contradiction"
|
969 |
+
],
|
970 |
+
"names_file": null,
|
971 |
+
"id": null,
|
972 |
+
"_type": "ClassLabel"
|
973 |
+
}
|
974 |
+
},
|
975 |
+
"post_processed": null,
|
976 |
+
"supervised_keys": null,
|
977 |
+
"builder_name": "xnli",
|
978 |
+
"config_name": "vi",
|
979 |
+
"version": {
|
980 |
+
"version_str": "1.1.0",
|
981 |
+
"description": "",
|
982 |
+
"major": 1,
|
983 |
+
"minor": 1,
|
984 |
+
"patch": 0
|
985 |
+
},
|
986 |
+
"splits": {
|
987 |
+
"train": {
|
988 |
+
"name": "train",
|
989 |
+
"num_bytes": 101417750,
|
990 |
+
"num_examples": 392702,
|
991 |
+
"dataset_name": "xnli"
|
992 |
+
},
|
993 |
+
"test": {
|
994 |
+
"name": "test",
|
995 |
+
"num_bytes": 1190225,
|
996 |
+
"num_examples": 5010,
|
997 |
+
"dataset_name": "xnli"
|
998 |
+
},
|
999 |
+
"validation": {
|
1000 |
+
"name": "validation",
|
1001 |
+
"num_bytes": 590688,
|
1002 |
+
"num_examples": 2490,
|
1003 |
+
"dataset_name": "xnli"
|
1004 |
+
}
|
1005 |
+
},
|
1006 |
+
"download_checksums": {
|
1007 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
1008 |
+
"num_bytes": 466098360,
|
1009 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
1010 |
+
},
|
1011 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
1012 |
+
"num_bytes": 17865352,
|
1013 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
1014 |
+
}
|
1015 |
+
},
|
1016 |
+
"download_size": 483963712,
|
1017 |
+
"post_processing_size": null,
|
1018 |
+
"dataset_size": 103198663,
|
1019 |
+
"size_in_bytes": 587162375
|
1020 |
+
},
|
1021 |
+
"zh": {
|
1022 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
1023 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
1024 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
1025 |
+
"license": "",
|
1026 |
+
"features": {
|
1027 |
+
"premise": {
|
1028 |
+
"dtype": "string",
|
1029 |
+
"id": null,
|
1030 |
+
"_type": "Value"
|
1031 |
+
},
|
1032 |
+
"hypothesis": {
|
1033 |
+
"dtype": "string",
|
1034 |
+
"id": null,
|
1035 |
+
"_type": "Value"
|
1036 |
+
},
|
1037 |
+
"label": {
|
1038 |
+
"num_classes": 3,
|
1039 |
+
"names": [
|
1040 |
+
"entailment",
|
1041 |
+
"neutral",
|
1042 |
+
"contradiction"
|
1043 |
+
],
|
1044 |
+
"names_file": null,
|
1045 |
+
"id": null,
|
1046 |
+
"_type": "ClassLabel"
|
1047 |
+
}
|
1048 |
+
},
|
1049 |
+
"post_processed": null,
|
1050 |
+
"supervised_keys": null,
|
1051 |
+
"builder_name": "xnli",
|
1052 |
+
"config_name": "zh",
|
1053 |
+
"version": {
|
1054 |
+
"version_str": "1.1.0",
|
1055 |
+
"description": "",
|
1056 |
+
"major": 1,
|
1057 |
+
"minor": 1,
|
1058 |
+
"patch": 0
|
1059 |
+
},
|
1060 |
+
"splits": {
|
1061 |
+
"train": {
|
1062 |
+
"name": "train",
|
1063 |
+
"num_bytes": 72225161,
|
1064 |
+
"num_examples": 392702,
|
1065 |
+
"dataset_name": "xnli"
|
1066 |
+
},
|
1067 |
+
"test": {
|
1068 |
+
"name": "test",
|
1069 |
+
"num_bytes": 777937,
|
1070 |
+
"num_examples": 5010,
|
1071 |
+
"dataset_name": "xnli"
|
1072 |
+
},
|
1073 |
+
"validation": {
|
1074 |
+
"name": "validation",
|
1075 |
+
"num_bytes": 384859,
|
1076 |
+
"num_examples": 2490,
|
1077 |
+
"dataset_name": "xnli"
|
1078 |
+
}
|
1079 |
+
},
|
1080 |
+
"download_checksums": {
|
1081 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
1082 |
+
"num_bytes": 466098360,
|
1083 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
1084 |
+
},
|
1085 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
1086 |
+
"num_bytes": 17865352,
|
1087 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
1088 |
+
}
|
1089 |
+
},
|
1090 |
+
"download_size": 483963712,
|
1091 |
+
"post_processing_size": null,
|
1092 |
+
"dataset_size": 73387957,
|
1093 |
+
"size_in_bytes": 557351669
|
1094 |
+
},
|
1095 |
+
"all_languages": {
|
1096 |
+
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
|
1097 |
+
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
|
1098 |
+
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
|
1099 |
+
"license": "",
|
1100 |
+
"features": {
|
1101 |
+
"premise": {
|
1102 |
+
"languages": [
|
1103 |
+
"ar",
|
1104 |
+
"bg",
|
1105 |
+
"de",
|
1106 |
+
"el",
|
1107 |
+
"en",
|
1108 |
+
"es",
|
1109 |
+
"fr",
|
1110 |
+
"hi",
|
1111 |
+
"ru",
|
1112 |
+
"sw",
|
1113 |
+
"th",
|
1114 |
+
"tr",
|
1115 |
+
"ur",
|
1116 |
+
"vi",
|
1117 |
+
"zh"
|
1118 |
+
],
|
1119 |
+
"id": null,
|
1120 |
+
"_type": "Translation"
|
1121 |
+
},
|
1122 |
+
"hypothesis": {
|
1123 |
+
"languages": [
|
1124 |
+
"ar",
|
1125 |
+
"bg",
|
1126 |
+
"de",
|
1127 |
+
"el",
|
1128 |
+
"en",
|
1129 |
+
"es",
|
1130 |
+
"fr",
|
1131 |
+
"hi",
|
1132 |
+
"ru",
|
1133 |
+
"sw",
|
1134 |
+
"th",
|
1135 |
+
"tr",
|
1136 |
+
"ur",
|
1137 |
+
"vi",
|
1138 |
+
"zh"
|
1139 |
+
],
|
1140 |
+
"num_languages": 15,
|
1141 |
+
"id": null,
|
1142 |
+
"_type": "TranslationVariableLanguages"
|
1143 |
+
},
|
1144 |
+
"label": {
|
1145 |
+
"num_classes": 3,
|
1146 |
+
"names": [
|
1147 |
+
"entailment",
|
1148 |
+
"neutral",
|
1149 |
+
"contradiction"
|
1150 |
+
],
|
1151 |
+
"names_file": null,
|
1152 |
+
"id": null,
|
1153 |
+
"_type": "ClassLabel"
|
1154 |
+
}
|
1155 |
+
},
|
1156 |
+
"post_processed": null,
|
1157 |
+
"supervised_keys": null,
|
1158 |
+
"builder_name": "xnli",
|
1159 |
+
"config_name": "all_languages",
|
1160 |
+
"version": {
|
1161 |
+
"version_str": "1.1.0",
|
1162 |
+
"description": "",
|
1163 |
+
"major": 1,
|
1164 |
+
"minor": 1,
|
1165 |
+
"patch": 0
|
1166 |
+
},
|
1167 |
+
"splits": {
|
1168 |
+
"train": {
|
1169 |
+
"name": "train",
|
1170 |
+
"num_bytes": 1581474731,
|
1171 |
+
"num_examples": 392702,
|
1172 |
+
"dataset_name": "xnli"
|
1173 |
+
},
|
1174 |
+
"test": {
|
1175 |
+
"name": "test",
|
1176 |
+
"num_bytes": 19387508,
|
1177 |
+
"num_examples": 5010,
|
1178 |
+
"dataset_name": "xnli"
|
1179 |
+
},
|
1180 |
+
"validation": {
|
1181 |
+
"name": "validation",
|
1182 |
+
"num_bytes": 9566255,
|
1183 |
+
"num_examples": 2490,
|
1184 |
+
"dataset_name": "xnli"
|
1185 |
+
}
|
1186 |
+
},
|
1187 |
+
"download_checksums": {
|
1188 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
|
1189 |
+
"num_bytes": 466098360,
|
1190 |
+
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
|
1191 |
+
},
|
1192 |
+
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
|
1193 |
+
"num_bytes": 17865352,
|
1194 |
+
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
|
1195 |
+
}
|
1196 |
+
},
|
1197 |
+
"download_size": 483963712,
|
1198 |
+
"post_processing_size": null,
|
1199 |
+
"dataset_size": 1610428494,
|
1200 |
+
"size_in_bytes": 2094392206
|
1201 |
+
}
|
1202 |
+
}
|