File size: 8,819 Bytes
88d89a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc15b7f
88d89a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc15b7f
 
88d89a0
 
 
 
bc15b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d89a0
 
 
bc15b7f
 
88d89a0
bc15b7f
 
 
 
 
 
 
 
 
 
 
 
 
88d89a0
 
 
 
bc15b7f
 
88d89a0
bc15b7f
88d89a0
 
bc15b7f
88d89a0
 
bc15b7f
88d89a0
bc15b7f
 
 
 
 
 
 
 
 
 
 
 
88d89a0
 
 
 
 
 
 
 
bc15b7f
 
 
 
 
 
 
 
88d89a0
 
bc15b7f
 
 
 
 
 
 
 
88d89a0
 
bc15b7f
 
 
 
 
 
88d89a0
 
 
bc15b7f
88d89a0
bc15b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd4d2b
 
bc15b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""XNLI: The Cross-Lingual NLI Corpus."""


import collections
import csv
import os
from contextlib import ExitStack

import datasets


_CITATION = """\
@InProceedings{conneau2018xnli,
  author = {Conneau, Alexis
                 and Rinott, Ruty
                 and Lample, Guillaume
                 and Williams, Adina
                 and Bowman, Samuel R.
                 and Schwenk, Holger
                 and Stoyanov, Veselin},
  title = {XNLI: Evaluating Cross-lingual Sentence Representations},
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2018},
  publisher = {Association for Computational Linguistics},
  location = {Brussels, Belgium},
}"""

_DESCRIPTION = """\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
"""

_TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip"
_TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip"

_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh")


class XnliConfig(datasets.BuilderConfig):
    """BuilderConfig for XNLI."""

    def __init__(self, language: str, languages=None, **kwargs):
        """BuilderConfig for XNLI.

        Args:
        language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages
          **kwargs: keyword arguments forwarded to super.
        """
        super(XnliConfig, self).__init__(**kwargs)
        self.language = language
        if language != "all_languages":
            self.languages = [language]
        else:
            self.languages = languages if languages is not None else _LANGUAGES


class Xnli(datasets.GeneratorBasedBuilder):
    """XNLI: The Cross-Lingual NLI Corpus. Version 1.0."""

    VERSION = datasets.Version("1.1.0", "")
    BUILDER_CONFIG_CLASS = XnliConfig
    BUILDER_CONFIGS = [
        XnliConfig(
            name=lang,
            language=lang,
            version=datasets.Version("1.1.0", ""),
            description=f"Plain text import of XNLI for the {lang} language",
        )
        for lang in _LANGUAGES
    ] + [
        XnliConfig(
            name="all_languages",
            language="all_languages",
            version=datasets.Version("1.1.0", ""),
            description="Plain text import of XNLI for all languages",
        )
    ]

    def _info(self):
        if self.config.language == "all_languages":
            features = datasets.Features(
                {
                    "premise": datasets.Translation(
                        languages=_LANGUAGES,
                    ),
                    "hypothesis": datasets.TranslationVariableLanguages(
                        languages=_LANGUAGES,
                    ),
                    "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
                }
            )
        else:
            features = datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "hypothesis": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            # No default supervised_keys (as we have to pass both premise
            # and hypothesis as input).
            supervised_keys=None,
            homepage="https://www.nyu.edu/projects/bowman/xnli/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dirs = dl_manager.download_and_extract(
            {
                "train_data": _TRAIN_DATA_URL,
                "testval_data": _TESTVAL_DATA_URL,
            }
        )
        train_dir = os.path.join(dl_dirs["train_data"], "XNLI-MT-1.0", "multinli")
        testval_dir = os.path.join(dl_dirs["testval_data"], "XNLI-1.0")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": [
                        os.path.join(train_dir, "multinli.train.{lang}.tsv".format(lang=lang))
                        for lang in self.config.languages
                    ],
                    "data_format": "XNLI-MT",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.test.tsv")], "data_format": "XNLI"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"},
            ),
        ]

    def _generate_examples(self, data_format, filepaths):
        """This function returns the examples in the raw (text) form."""

        if self.config.language == "all_languages":
            if data_format == "XNLI-MT":
                with ExitStack() as stack:
                    files = [stack.enter_context(open(filepath, encoding="utf-8")) for filepath in filepaths]
                    readers = [csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files]
                    for row_idx, rows in enumerate(zip(*readers)):
                        yield row_idx, {
                            "premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)},
                            "hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)},
                            "label": rows[0]["label"].replace("contradictory", "contradiction"),
                        }
            else:
                rows_per_pair_id = collections.defaultdict(list)
                for filepath in filepaths:
                    with open(filepath, encoding="utf-8") as f:
                        reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
                        for row in reader:
                            rows_per_pair_id[row["pairID"]].append(row)

                for rows in rows_per_pair_id.values():
                    premise = {row["language"]: row["sentence1"] for row in rows}
                    hypothesis = {row["language"]: row["sentence2"] for row in rows}
                    yield rows[0]["pairID"], {
                        "premise": premise,
                        "hypothesis": hypothesis,
                        "label": rows[0]["gold_label"],
                    }
        else:
            if data_format == "XNLI-MT":
                for file_idx, filepath in enumerate(filepaths):
                    file = open(filepath, encoding="utf-8")
                    reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
                    for row_idx, row in enumerate(reader):
                        key = str(file_idx) + "_" + str(row_idx)
                        yield key, {
                            "premise": row["premise"],
                            "hypothesis": row["hypo"],
                            "label": row["label"].replace("contradictory", "contradiction"),
                        }
            else:
                for filepath in filepaths:
                    with open(filepath, encoding="utf-8") as f:
                        reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
                        for row in reader:
                            if row["language"] == self.config.language:
                                yield row["pairID"], {
                                    "premise": row["sentence1"],
                                    "hypothesis": row["sentence2"],
                                    "label": row["gold_label"],
                                }