Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1M<n<10M
ArXiv:
License:
File size: 6,867 Bytes
8c00753 5332c46 8c00753 5332c46 e653d90 8c00753 5332c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset consisting of natural language query and code snippet pairs"""
import json
from itertools import chain
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Neural Code Search Evaluation Dataset},
authors = {Hongyu Li, Seohyun Kim and Satish Chandra},
journal = {arXiv e-prints},
year = 2018,
eid = {arXiv:1908.09804 [cs.SE]},
pages = {arXiv:1908.09804 [cs.SE]},
archivePrefix = {arXiv},
eprint = {1908.09804},
}
"""
_DESCRIPTION = """\
Neural-Code-Search-Evaluation-Dataset presents an evaluation dataset \
consisting of natural language query and code snippet pairs and a search corpus \
consisting of code snippets collected from the most popular Android repositories \
on GitHub.
"""
_HOMEPAGE = "https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/tree/master/data"
_LICENSE = "CC-BY-NC 4.0 (Attr Non-Commercial Inter.)"
_BASE_URL = "https://raw.githubusercontent.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset/master/data/"
_URLs = {
"evaluation_dataset": _BASE_URL + "287_android_questions.json",
"search_corpus_1": _BASE_URL + "search_corpus_1.tar.gz",
"search_corpus_2": _BASE_URL + "search_corpus_2.tar.gz",
}
class NeuralCodeSearch(datasets.GeneratorBasedBuilder):
"""Neural Code Search Evaluation Dataset"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="evaluation_dataset",
version=VERSION,
description="The evaluation dataset is composed of \
287 Stack Overflow question and answer pairs",
),
datasets.BuilderConfig(
name="search_corpus",
version=VERSION,
description="The search corpus is indexed using all \
method bodies parsed from the 24,549 GitHub repositories.",
),
]
FILENAME_MAP = {
"evaluation_dataset": "287_android_questions.json",
"search_corpus": "search_corpus_1.jsonl",
}
def _info(self):
if self.config.name == "evaluation_dataset":
features = datasets.Features(
{
"stackoverflow_id": datasets.Value("int32"),
"question": datasets.Value("string"),
"question_url": datasets.Value("string"),
"question_author": datasets.Value("string"),
"question_author_url": datasets.Value("string"),
"answer": datasets.Value("string"),
"answer_url": datasets.Value("string"),
"answer_author": datasets.Value("string"),
"answer_author_url": datasets.Value("string"),
"examples": datasets.features.Sequence(datasets.Value("int32")),
"examples_url": datasets.features.Sequence(datasets.Value("string")),
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("int32"),
"filepath": datasets.Value("string"),
"method_name": datasets.Value("string"),
"start_line": datasets.Value("int32"),
"end_line": datasets.Value("int32"),
"url": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "evaluation_dataset":
filepath = dl_manager.download_and_extract(_URLs[self.config.name])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": filepath},
),
]
else:
my_urls = [url for config, url in _URLs.items() if config.startswith(self.config.name)]
archives = dl_manager.download(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": chain(*(dl_manager.iter_archive(archive) for archive in archives)),
},
),
]
def _generate_examples(self, filepath=None, files=None):
"""Yields examples."""
id_ = 0
if self.config.name == "evaluation_dataset":
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for row in data:
yield id_, {
"stackoverflow_id": row["stackoverflow_id"],
"question": row["question"],
"question_url": row["question_url"],
"question_author": row["question_author"],
"question_author_url": row["question_author_url"],
"answer": row["answer"],
"answer_url": row["answer_url"],
"answer_author": row["answer_author"],
"answer_author_url": row["answer_author_url"],
"examples": row["examples"],
"examples_url": row["examples_url"],
}
id_ += 1
else:
for _, f in files:
for row in f:
data_dict = json.loads(row.decode("utf-8"))
yield id_, {
"id": data_dict["id"],
"filepath": data_dict["filepath"],
"method_name": data_dict["method_name"],
"start_line": data_dict["start_line"],
"end_line": data_dict["end_line"],
"url": data_dict["url"],
}
id_ += 1
|