File size: 14,727 Bytes
667c6d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""KILT tasks training and evaluation data"""

from __future__ import absolute_import, division, print_function

import json
import logging

import datasets


_CITATION = """\
@inproceedings{fb_kilt,
    author    = {Fabio Petroni and
                 Aleksandra Piktus and
                 Angela Fan and
                 Patrick Lewis and
                 Majid Yazdani and
                 Nicola De Cao and
                 James Thorne and
                 Yacine Jernite and
                 Vassilis Plachouras and
                 Tim Rockt\"aschel and
                 Sebastian Riedel},
    title     = {{KILT:} a {B}enchmark for {K}nowledge {I}ntensive {L}anguage {T}asks},
    journal   = {CoRR},
    archivePrefix = {arXiv},
    year      = {2020},
"""

_DESCRIPTION = """\
KILT tasks training and evaluation data.
- [FEVER](https://fever.ai) | Fact Checking | fever
- [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2
- [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned
- [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb
- [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex
- [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot
- [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA  | nq
- [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa
- [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa
- [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5
- [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow

To finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).
"""


_DATA_URLS = {
    "fever": {
        "train": "http://dl.fbaipublicfiles.com/KILT/fever-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/fever-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/fever-test_without_answers-kilt.jsonl",
    },
    "aidayago2": {
        "train": "http://dl.fbaipublicfiles.com/KILT/aidayago2-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/aidayago2-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/aidayago2-test_without_answers-kilt.jsonl",
    },
    "wned": {
        "validation": "http://dl.fbaipublicfiles.com/KILT/wned-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/wned-test_without_answers-kilt.jsonl",
    },
    "cweb": {
        "validation": "http://dl.fbaipublicfiles.com/KILT/cweb-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/cweb-test_without_answers-kilt.jsonl",
    },
    "trex": {
        "train": "http://dl.fbaipublicfiles.com/KILT/trex-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/trex-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/trex-test_without_answers-kilt.jsonl",
    },
    "structured_zeroshot": {
        "train": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/structured_zeroshot-test_without_answers-kilt.jsonl",
    },
    "nq": {
        "train": "http://dl.fbaipublicfiles.com/KILT/nq-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/nq-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/nq-test_without_answers-kilt.jsonl",
    },
    "hotpotqa": {
        "train": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/hotpotqa-test_without_answers-kilt.jsonl",
    },
    "triviaqa": {
        "train": "http://dl.fbaipublicfiles.com/KILT/triviaqa-train_id-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/triviaqa-dev_id-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/triviaqa-test_id_without_answers-kilt.jsonl",
    },
    "eli5": {
        "train": "http://dl.fbaipublicfiles.com/KILT/eli5-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/eli5-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/eli5-test_without_answers-kilt.jsonl",
    },
    "wow": {
        "train": "http://dl.fbaipublicfiles.com/KILT/wow-train-kilt.jsonl",
        "validation": "http://dl.fbaipublicfiles.com/KILT/wow-dev-kilt.jsonl",
        "test": "http://dl.fbaipublicfiles.com/KILT/wow-test_without_answers-kilt.jsonl",
    },
}


class KILTTasksConfig(datasets.BuilderConfig):
    """BuilderConfig for KILTTasks."""

    def __init__(self, **kwargs):
        """BuilderConfig for KILTTasks.

            Args:
        .
              **kwargs: keyword arguments forwarded to super.
        """
        super(KILTTasksConfig, self).__init__(
            version=datasets.Version("1.0.0", "KILT tasks training and evaluation data"), **kwargs
        )


class KILTTasks(datasets.GeneratorBasedBuilder):
    """WikipediaKILT: Wikipedia pre-processed for KILT. Version 1.0."""

    BUILDER_CONFIGS = [
        KILTTasksConfig(
            name="all_tasks",
            description="All KILT tasks traiing and evaluation data",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "input": datasets.Value("string"),
                    "meta": datasets.Features(
                        {
                            "left_context": datasets.Value("string"),
                            "mention": datasets.Value("string"),
                            "right_context": datasets.Value("string"),
                            "partial_evidence": datasets.features.Sequence(
                                {
                                    "start_paragraph_id": datasets.Value("int32"),
                                    "end_paragraph_id": datasets.Value("int32"),
                                    "title": datasets.Value("string"),
                                    "section": datasets.Value("string"),
                                    "wikipedia_id": datasets.Value("string"),
                                    "meta": datasets.features.Sequence(
                                        {
                                            "evidence_span": datasets.Value("string"),
                                        }
                                    ),
                                }
                            ),
                            "obj_surface": datasets.features.Sequence({"text": datasets.Value("string")}),
                            "sub_surface": datasets.features.Sequence({"text": datasets.Value("string")}),
                            "subj_aliases": datasets.features.Sequence({"text": datasets.Value("string")}),
                            "template_questions": datasets.features.Sequence({"text": datasets.Value("string")}),
                        }
                    ),
                    "output": datasets.features.Sequence(
                        {
                            "answer": datasets.Value("string"),
                            "meta": datasets.Features({"score": datasets.Value("int32")}),
                            "provenance": datasets.features.Sequence(
                                {
                                    "bleu_score": datasets.Value("float32"),
                                    "start_character": datasets.Value("int32"),
                                    "start_paragraph_id": datasets.Value("int32"),
                                    "end_character": datasets.Value("int32"),
                                    "end_paragraph_id": datasets.Value("int32"),
                                    "meta": datasets.Features(
                                        {
                                            "fever_page_id": datasets.Value("string"),
                                            "fever_sentence_id": datasets.Value("int32"),
                                            "annotation_id": datasets.Value("string"),  # int runs into overflow issues
                                            "yes_no_answer": datasets.Value("string"),
                                            "evidence_span": datasets.features.Sequence(
                                                {"text": datasets.Value("string")}
                                            ),
                                        }
                                    ),
                                    "section": datasets.Value("string"),
                                    "title": datasets.Value("string"),
                                    "wikipedia_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both premise
            # and hypothesis as input).
            supervised_keys=None,
            homepage="https://github.com/facebookresearch/KILT",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        file_paths = {}
        for task_name, task_urls in _DATA_URLS.items():
            file_paths[task_name] = dl_manager.download_and_extract(task_urls)

        return [
            datasets.SplitGenerator(name=split + "_" + task, gen_kwargs={"filepath": downloaded_path})
            for task, split_paths in file_paths.items()
            for split, downloaded_path in split_paths.items()
        ]

    def _generate_examples(self, filepath):
        """Generate Wikipedia articles for KILT.

        Args:
          filepath: a string

        Yields:
          dictionaries representing article data and metadata
        """
        logging.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            for idx, line in enumerate(f):
                article = json.loads(line.strip())
                article["input"] = article.get("input", "")
                # meta
                article["meta"] = article.get("meta", {})
                for k in ["left_context", "mention", "right_context"]:
                    article["meta"][k] = article["meta"].get(k, "")
                for k in ["obj_surface", "sub_surface", "subj_aliases", "template_questions"]:
                    article["meta"][k] = {"text": article["meta"].get(k, [])}
                article["meta"]["partial_evidence"] = article["meta"].get("partial_evidence", [])
                if "partial_evidence" in article["meta"]:
                    dct_list = {}
                    for k in ["start_paragraph_id", "end_paragraph_id"]:
                        dct_list[k] = [dct.get(k, -1) for dct in article["meta"]["partial_evidence"]]
                    for k in ["title", "section", "wikipedia_id"]:
                        dct_list[k] = [dct.get(k, "") for dct in article["meta"]["partial_evidence"]]
                    if any(["meta" in dct for dct in article["meta"]["partial_evidence"]]):
                        dct_list["meta"] = [dct.get("meta", {}) for dct in article["meta"]["partial_evidence"]]
                        for meta in dct_list["meta"]:
                            meta["evidence_span"] = meta.get("evidence_span", [])
                    else:
                        dct_list["meta"] = []
                    article["meta"]["partial_evidence"] = dct_list
                # output
                article["output"] = article.get("output", [])
                dct_list = {}
                dct_list["answer"] = [dct.get("answer", "") for dct in article["output"]]
                if any(["meta" in dct for dct in article["output"]]):
                    dct_list["meta"] = [dct.get("meta", {"score": 0}) for dct in article["output"]]
                else:
                    dct_list["meta"] = []
                dct_list["provenance"] = []
                for dct in article["output"]:
                    if "provenance" in dct:
                        prov_list = dct["provenance"]
                        prov_dct_list = {}
                        prov_dct_list["bleu_score"] = [prov.get("bleu_score", 0.0) for prov in prov_list]
                        if any(["meta" in prov for prov in prov_list]):
                            prov_dct_list["meta"] = [prov.get("meta", {}) for prov in prov_list]
                            for meta_dct in prov_dct_list["meta"]:
                                meta_dct["fever_page_id"] = meta_dct.get("fever_page_id", "")
                                meta_dct["fever_sentence_id"] = meta_dct.get("fever_sentence_id", -1)
                                meta_dct["yes_no_answer"] = meta_dct.get("yes_no_answer", "")
                                meta_dct["annotation_id"] = str(meta_dct.get("annotation_id", -1))
                                meta_dct["evidence_span"] = {"text": meta_dct.get("evidence_span", [])}
                        else:
                            prov_dct_list["meta"] = []
                        for k in ["start_character", "start_paragraph_id", "end_character", "end_paragraph_id"]:
                            prov_dct_list[k] = [prov.get(k, -1) for prov in prov_list]
                        for k in ["section", "title", "wikipedia_id"]:
                            prov_dct_list[k] = [prov.get(k, "") for prov in prov_list]
                        dct_list["provenance"] += [prov_dct_list]
                article["output"] = dct_list
                yield idx, article