File size: 12,006 Bytes
4b18ec2
 
 
 
 
d782488
4b18ec2
d782488
690279b
4b18ec2
 
 
 
 
 
 
3a8f51a
 
4b18ec2
239dbae
dd4e169
184bb68
e5de162
 
c3ae8fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d68b6
 
 
 
 
 
c3ae8fe
 
4b18ec2
 
 
 
 
 
 
dd4e169
4b18ec2
 
 
dd4e169
 
4b18ec2
 
 
 
 
 
 
 
 
 
 
 
 
cd86a0f
4b18ec2
 
 
239dbae
 
 
 
4b18ec2
 
 
239dbae
4b18ec2
 
 
3a8f51a
4b18ec2
 
 
239dbae
4b18ec2
 
 
 
 
239dbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b18ec2
 
 
239dbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b18ec2
 
 
239dbae
 
62197cc
 
 
4b18ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239dbae
4b18ec2
 
 
239dbae
 
 
 
 
 
 
 
 
cd86a0f
 
 
e5de162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: curiosity
pretty_name: Curiosity Dataset
tags:
- conversational-curiosity
dataset_info:
  features:
  - name: messages
    sequence:
    - name: message
      dtype: string
    - name: liked
      dtype:
        class_label:
          names:
            0: 'False'
            1: 'True'
    - name: sender
      dtype:
        class_label:
          names:
            0: user
            1: assistant
    - name: facts
      sequence:
      - name: fid
        dtype: int32
      - name: used
        dtype:
          class_label:
            names:
              0: 'False'
              1: 'True'
      - name: source
        dtype:
          class_label:
            names:
              0: section
              1: known
              2: random
    - name: message_id
      dtype: string
    - name: dialog_acts
      sequence: string
  - name: known_entities
    sequence: string
  - name: focus_entity
    dtype: string
  - name: dialog_id
    dtype: int32
  - name: inferred_steps
    dtype:
      class_label:
        names:
          0: 'False'
          1: 'True'
  - name: created_time
    dtype: int64
  - name: aspects
    sequence: string
  - name: first_aspect
    dtype: string
  - name: second_aspect
    dtype: string
  - name: shuffle_facts
    dtype:
      class_label:
        names:
          0: 'False'
          1: 'True'
  - name: related_entities
    sequence: string
  - name: tag
    dtype: string
  - name: user_id
    dtype: int32
  - name: assistant_id
    dtype: int32
  - name: is_annotated
    dtype:
      class_label:
        names:
          0: 'False'
          1: 'True'
  - name: user_dialog_rating
    dtype: int32
  - name: user_other_agent_rating
    dtype: int32
  - name: assistant_dialog_rating
    dtype: int32
  - name: assistant_other_agent_rating
    dtype: int32
  - name: reported
    dtype:
      class_label:
        names:
          0: 'False'
          1: 'True'
  - name: annotated
    dtype:
      class_label:
        names:
          0: 'False'
          1: 'True'
  config_name: curiosity_dialogs
  splits:
  - name: train
    num_bytes: 37198297
    num_examples: 10287
  - name: val
    num_bytes: 4914487
    num_examples: 1287
  - name: test
    num_bytes: 4915613
    num_examples: 1287
  - name: test_zero
    num_bytes: 4333191
    num_examples: 1187
  download_size: 92169165
  dataset_size: 51361588
---

# Dataset Card for Curiosity Dataset

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Curiosity Dataset Homepage](https://www.pedro.ai/curiosity)
- **Repository:** [Curiosity Dataset Repository](https://github.com/facebookresearch/curiosity)
- **Paper:** [ACL Anthology](https://www.aclweb.org/anthology/2020.emnlp-main.655/)
- **Point of Contact:** [Pedro Rodriguez](https://mailhide.io/e/wbfjM)

### Dataset Summary

Curiosity dataset consists of 14K English dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages.

### Supported Tasks and Leaderboards

* `text-generation-other-conversational-curiosity`: The dataset can be used to train a model for Conversational Curiosity, which consists in the testing of the hypothesis that engagement increases when users are presented with facts related to what they know. Success on this task is typically measured by achieving a *high* [Accuracy](https://huggingface.co/metrics/accuracy) and [F1 Score](https://huggingface.co/metrics/f1).

### Languages

The text in the dataset is in English collected by crowd-souring. The associated BCP-47 code is `en`.

## Dataset Structure

### Data Instances

A typical data point consists of dialogs between an user and an assistant, which is followed by the different attributes of the particular dialog.

An example from the Curiosity Dataset train set looks as follows:

```
{'annotated': 1,
 'aspects': ['Media', 'Politics and government'],
 'assistant_dialog_rating': 5,
 'assistant_id': 341,
 'assistant_other_agent_rating': 5,
 'created_time': 1571783665,
 'dialog_id': 21922,
 'first_aspect': 'Media',
 'focus_entity': 'Namibia',
 'inferred_steps': 1,
 'is_annotated': 0,
 'known_entities': ['South Africa', 'United Kingdom', 'Portugal'],
 'messages': {'dialog_acts': [['request_topic'],
   ['inform_response'],
   ['request_aspect'],
   ['inform_response'],
   ['request_followup'],
   ['inform_response'],
   ['request_aspect', 'feedback_positive'],
   ['inform_response'],
   ['request_followup'],
   ['inform_response'],
   [],
   []],
  'facts': [{'fid': [], 'source': [], 'used': []},
   {'fid': [77870, 77676, 77816, 77814, 77775, 77659, 77877, 77785, 77867],
    'source': [0, 1, 2, 2, 0, 2, 0, 1, 1],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
   {'fid': [], 'source': [], 'used': []},
   {'fid': [77725, 77870, 77676, 77863, 77814, 77775, 77659, 77877, 77867],
    'source': [2, 0, 1, 1, 2, 0, 2, 0, 1],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
   {'fid': [], 'source': [], 'used': []},
   {'fid': [77694, 77661, 77863, 77780, 77671, 77704, 77869, 77693, 77877],
    'source': [1, 2, 1, 0, 2, 2, 0, 1, 0],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]},
   {'fid': [], 'source': [], 'used': []},
   {'fid': [77816, 77814, 77864, 77659, 77877, 77803, 77738, 77784, 77789],
    'source': [2, 2, 0, 2, 0, 1, 1, 0, 1],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
   {'fid': [], 'source': [], 'used': []},
   {'fid': [77694, 77776, 77780, 77696, 77707, 77693, 77778, 77702, 77743],
    'source': [1, 0, 0, 2, 1, 1, 0, 2, 2],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
   {'fid': [], 'source': [], 'used': []},
   {'fid': [77662, 77779, 77742, 77734, 77663, 77777, 77702, 77731, 77778],
    'source': [1, 0, 2, 1, 2, 0, 2, 1, 0],
    'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]}],
  'liked': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  'message': ['Hi. I want information about Namibia.',
   'Nmbia is a country in southern Africa.',
   'Do you have information about the media there?',
   'A mentional amount of foriegn',
   'What about it?',
   "Media and journalists in Namibia are represented by the Namibia chapter of the Media Institute of 'southern Africa and the Editors Forum of Namibia.",
   'Interesting! What can you tell me about the politics and government?',
   'Namibia formed the Namibian Defence Force, comprising former enemies in a 23-year bush war.',
   'Do you have more information about it?',
   "With a small army and a fragile economy , the Namibian government's principal foreign policy concern is developing strengthened ties within the Southern African region.",
   "That's all I wanted to know. Thank you!",
   'My pleasure!'],
  'message_id': ['617343895',
   '2842515356',
   '4240816985',
   '520711081',
   '1292358002',
   '3677078227',
   '1563061125',
   '1089028270',
   '1607063839',
   '113037558',
   '1197873991',
   '1399017322'],
  'sender': [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]},
 'related_entities': ['Western Roman Empire',
  'United Kingdom',
  'Portuguese language',
  'Southern African Development Community',
  'South Africa',
  'Kalahari Desert',
  'Namib Desert',
  'League of Nations',
  'Afrikaans',
  'Sub-Saharan Africa',
  'Portugal',
  'South-West Africa',
  'Warmbad, Namibia',
  'German language',
  'NBC'],
 'reported': 0,
 'second_aspect': 'Politics and government',
 'shuffle_facts': 1,
 'tag': 'round_2',
 'user_dialog_rating': 5,
 'user_id': 207,
 'user_other_agent_rating': 5}
```



### Data Fields

* `messages`: List of dialogs between the user and the assistant and their associated attributes
  * `dialog_acts`: List of actions performed in the dialogs
  * `facts`:  List of facts returned by the assistant
    * `fid`: Fact ID 
    * `source`: Source for the fact
    * `used`:  Whether facts were used before in the same dialog
  * `liked`: List of values indicating whether each dialog was liked
  * `message`: List of dialogs (messages) between the user and the assistant
  * `message_id`: Message ID
  * `sender`:  Message author ID (numeric)
* `known_entities`:  Rooted facts about entities the user knows
* `focus_entity` : Entity in focus in the dialogs
* `dialog_id `: Dialog ID
* `inferred_steps`:  Number of inferred steps
* `created_time`:  Time of creation of the dialog
* `aspects`:  List of two aspects which the dialog is about
* `first_aspect`: First aspect
* `second_aspect`: Second aspect
* `shuffle_facts`: Whether facts were shuffled
* `related_entities` : List of fifteen related entities to the focus entity
* `tag`: Conversation tag
* `user_id`: User ID
* `assistant_id`: Assistant ID
* `is_annotated`:  0 or 1 (More Information Needed)
* `user_dialog_rating`:  1 - 5 (More Information Needed)
* `user_other_agent_rating`: 1 - 5 (More Information Needed)
* `assistant_dialog_rating`: 1 - 5 (More Information Needed)
* `assistant_other_agent_rating`: 1 - 5 (More Information Needed)
* `reported`: Whether the dialog was reported inappropriate
* `annotated`: 0 or 1 (More Information Needed)

### Data Splits

The data is split into a training, validation, test and test_zero set as per the original dataset split.

|                       | train | validation | test | test_zero |
|-----------------------|------:|-----------:|-----:|----------:|
| Input dialog examples | 10287 |       1287 | 1287 |      1187 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode)

### Citation Information

```
@inproceedings{rodriguez2020curiosity,
    title = {Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity},
    author = {Pedro Rodriguez and Paul Crook and Seungwhan Moon and Zhiguang Wang},
    year = 2020,
    booktitle = {Empirical Methods in Natural Language Processing}
}
```


### Contributions

Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset.