Datasets:
File size: 11,908 Bytes
6c04ba5 adcf74b 6c04ba5 adcf74b d3cf2c1 6c04ba5 a0bb21e 6c04ba5 d3cf2c1 6c04ba5 d3cf2c1 fb642f5 a0bb21e 2e86c73 52e43c2 e78943c 273c126 e78943c 39f7d3f e78943c 39f7d3f 2e86c73 39f7d3f 2e86c73 6c04ba5 fb642f5 6c04ba5 fb642f5 6c04ba5 08cbbd4 6c04ba5 9bf4b3e 6c04ba5 87267f3 6c04ba5 08cbbd4 52e43c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
- extended|other-turkcorpus
task_categories:
- text-classification
- text2text-generation
task_ids:
- text-simplification
paperswithcode_id: asset
pretty_name: ASSET
config_names:
- ratings
- simplification
tags:
- simplification-evaluation
dataset_info:
- config_name: ratings
features:
- name: original
dtype: string
- name: simplification
dtype: string
- name: original_sentence_id
dtype: int32
- name: aspect
dtype:
class_label:
names:
'0': meaning
'1': fluency
'2': simplicity
- name: worker_id
dtype: int32
- name: rating
dtype: int32
splits:
- name: full
num_bytes: 1036845
num_examples: 4500
download_size: 44642
dataset_size: 1036845
- config_name: simplification
features:
- name: original
dtype: string
- name: simplifications
sequence: string
splits:
- name: validation
num_bytes: 2303484
num_examples: 2000
- name: test
num_bytes: 411019
num_examples: 359
download_size: 1055163
dataset_size: 2714503
configs:
- config_name: ratings
data_files:
- split: full
path: ratings/full-*
- config_name: simplification
data_files:
- split: validation
path: simplification/validation-*
- split: test
path: simplification/test-*
default: true
---
# Dataset Card for ASSET
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [ASSET Github repository](https://github.com/facebookresearch/asset)
- **Paper:** [ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations](https://www.aclweb.org/anthology/2020.acl-main.424/)
- **Point of Contact:** [Louis Martin](louismartincs@gmail.com)
### Dataset Summary
[ASSET](https://github.com/facebookresearch/asset) [(Alva-Manchego et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.424.pdf) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from [TurkCorpus]( https://github.com/cocoxu/simplification/) [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence
splitting in [HSplit](https://www.aclweb.org/anthology/D18-1081.pdf)), the simplifications in ASSET encompass a variety of rewriting transformations.
### Supported Tasks and Leaderboards
The dataset supports the evaluation of `text-simplification` systems. Success in this tasks is typically measured using the [SARI](https://huggingface.co/metrics/sari) and [FKBLEU](https://huggingface.co/metrics/fkbleu) metrics described in the paper [Optimizing Statistical Machine Translation for Text Simplification](https://www.aclweb.org/anthology/Q16-1029.pdf).
### Languages
The text in this dataset is in English (`en`).
## Dataset Structure
### Data Instances
- `simplification` configuration: an instance consists in an original sentence and 10 possible reference simplifications.
- `ratings` configuration: a data instance consists in an original sentence, a simplification obtained by an automated system, and a judgment of quality along one of three axes by a crowd worker.
### Data Fields
- `original`: an original sentence from the source datasets
- `simplifications`: in the `simplification` config, a set of reference simplifications produced by crowd workers.
- `simplification`: in the `ratings` config, a simplification of the original obtained by an automated system
- `aspect`: in the `ratings` config, the aspect on which the simplification is evaluated, one of `meaning`, `fluency`, `simplicity`
- `rating`: a quality rating between 0 and 100
### Data Splits
ASSET does not contain a training set; many models use [WikiLarge](https://github.com/XingxingZhang/dress) (Zhang and Lapata, 2017) for training.
Each input sentence has 10 associated reference simplified sentences. The statistics of ASSET are given below.
| | Dev | Test | Total |
| ----- | ------ | ---- | ----- |
| Input Sentences | 2000 | 359 | 2359 |
| Reference Simplifications | 20000 | 3590 | 23590 |
The test and validation sets are the same as those of TurkCorpus. The split was random.
There are 19.04 tokens per reference on average (lower than 21.29 and 25.49 for TurkCorpus and HSplit, respectively). Most (17,245) of the referece sentences do not involve sentence splitting.
## Dataset Creation
### Curation Rationale
ASSET was created in order to improve the evaluation of sentence simplification. It uses the same input sentences as the [TurkCorpus]( https://github.com/cocoxu/simplification/) dataset from [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf). The 2,359 input sentences of TurkCorpus are a sample of "standard" (not simple) sentences from the [Parallel Wikipedia Simplification (PWKP)](https://www.informatik.tu-darmstadt.de/ukp/research_6/data/sentence_simplification/simple_complex_sentence_pairs/index.en.jsp) dataset [(Zhu et al., 2010)](https://www.aclweb.org/anthology/C10-1152.pdf), which come from the August 22, 2009 version of Wikipedia. The sentences of TurkCorpus were chosen to be of similar length [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf). No further information is provided on the sampling strategy.
The TurkCorpus dataset was developed in order to overcome some of the problems with sentence pairs from Standard and Simple Wikipedia: a large fraction of sentences were misaligned, or not actually simpler [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf). However, TurkCorpus mainly focused on *lexical paraphrasing*, and so cannot be used to evaluate simplifications involving *compression* (deletion) or *sentence splitting*. HSplit [(Sulem et al., 2018)](https://www.aclweb.org/anthology/D18-1081.pdf), on the other hand, can only be used to evaluate sentence splitting. The reference sentences in ASSET include a wider variety of sentence rewriting strategies, combining splitting, compression and paraphrasing. Annotators were given examples of each kind of transformation individually, as well as all three transformations used at once, but were allowed to decide which transformations to use for any given sentence.
An example illustrating the differences between TurkCorpus, HSplit and ASSET is given below:
> **Original:** He settled in London, devoting himself chiefly to practical teaching.
>
> **TurkCorpus:** He rooted in London, devoting himself mainly to practical teaching.
>
> **HSplit:** He settled in London. He devoted himself chiefly to practical teaching.
>
> **ASSET:** He lived in London. He was a teacher.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
The input sentences are from English Wikipedia (August 22, 2009 version). No demographic information is available for the writers of these sentences. However, most Wikipedia editors are male (Lam, 2011; Graells-Garrido, 2015), which has an impact on the topics covered (see also [the Wikipedia page on Wikipedia gender bias](https://en.wikipedia.org/wiki/Gender_bias_on_Wikipedia)). In addition, Wikipedia editors are mostly white, young, and from the Northern Hemisphere [(Wikipedia: Systemic bias)](https://en.wikipedia.org/wiki/Wikipedia:Systemic_bias).
Reference sentences were written by 42 workers on Amazon Mechanical Turk (AMT). The requirements for being an annotator were:
- Passing a Qualification Test (appropriately simplifying sentences). Out of 100 workers, 42 passed the test.
- Being a resident of the United States, United Kingdom or Canada.
- Having a HIT approval rate over 95%, and over 1000 HITs approved.
No other demographic or compensation information is provided in the ASSET paper.
### Annotations
#### Annotation process
The instructions given to the annotators are available [here](https://github.com/facebookresearch/asset/blob/master/crowdsourcing/AMT_AnnotationInstructions.pdf).
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
The dataset may contain some social biases, as the input sentences are based on Wikipedia. Studies have shown that the English Wikipedia contains both gender biases (Schmahl et al., 2020) and racial biases (Adams et al., 2019).
> Adams, Julia, Hannah Brückner, and Cambria Naslund. "Who Counts as a Notable Sociologist on Wikipedia? Gender, Race, and the “Professor Test”." Socius 5 (2019): 2378023118823946.
> Schmahl, Katja Geertruida, et al. "Is Wikipedia succeeding in reducing gender bias? Assessing changes in gender bias in Wikipedia using word embeddings." Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science. 2020.
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
## Additional Information
### Dataset Curators
ASSET was developed by researchers at the University of Sheffield, Inria,
Facebook AI Research, and Imperial College London. The work was partly supported by Benoît Sagot's chair in the PRAIRIE institute, funded by the French National Research Agency (ANR) as part of the "Investissements d’avenir" program (reference ANR-19-P3IA-0001).
### Licensing Information
[Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/)
### Citation Information
```
@inproceedings{alva-manchego-etal-2020-asset,
title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
author = "Alva-Manchego, Fernando and
Martin, Louis and
Bordes, Antoine and
Scarton, Carolina and
Sagot, Beno{\^\i}t and
Specia, Lucia",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.424",
pages = "4668--4679",
}
```
This dataset card uses material written by [Juan Diego Rodriguez](https://github.com/juand-r).
### Contributions
Thanks to [@yjernite](https://github.com/yjernite) for adding this dataset. |