File size: 6,251 Bytes
6c04ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22dd838
6c04ba5
 
 
 
 
 
 
6deec0e
6c04ba5
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ASSET: a dataset for sentence simplification evaluation"""


import csv

import datasets


_CITATION = """\
@inproceedings{alva-manchego-etal-2020-asset,
    title = "{ASSET}: {A} Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations",
    author = "Alva-Manchego, Fernando  and
      Martin, Louis  and
      Bordes, Antoine  and
      Scarton, Carolina  and
      Sagot, Benoit  and
      Specia, Lucia",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.424",
    pages = "4668--4679",
}
"""

_DESCRIPTION = """\
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations,
as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations".
The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 times by different annotators.
The corpus also contains human judgments of meaning preservation, fluency and simplicity for the outputs of several automatic text simplification systems.
"""

_HOMEPAGE = "https://github.com/facebookresearch/asset"

_LICENSE = "Creative Common Attribution-NonCommercial 4.0 International"

_URL_LIST = [
    ("human_ratings.csv", "https://github.com/facebookresearch/asset/raw/master/human_ratings/human_ratings.csv"),
    ("asset.valid.orig", "https://github.com/facebookresearch/asset/raw/master/dataset/asset.valid.orig"),
    ("asset.test.orig", "https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.orig"),
]
_URL_LIST += [
    (
        f"asset.{spl}.simp.{i}",
        f"https://github.com/facebookresearch/asset/raw/master/dataset/asset.{spl}.simp.{i}",
    )
    for spl in ["valid", "test"]
    for i in range(10)
]

_URLs = dict(_URL_LIST)


class Asset(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="simplification",
            version=VERSION,
            description="A set of original sentences aligned with 10 possible simplifications for each.",
        ),
        datasets.BuilderConfig(
            name="ratings", version=VERSION, description="Human ratings of automatically produced text implification."
        ),
    ]

    DEFAULT_CONFIG_NAME = "simplification"

    def _info(self):
        if self.config.name == "simplification":
            features = datasets.Features(
                {
                    "original": datasets.Value("string"),
                    "simplifications": datasets.Sequence(datasets.Value("string")),
                }
            )
        else:
            features = datasets.Features(
                {
                    "original": datasets.Value("string"),
                    "simplification": datasets.Value("string"),
                    "original_sentence_id": datasets.Value("int32"),
                    "aspect": datasets.ClassLabel(names=["meaning", "fluency", "simplicity"]),
                    "worker_id": datasets.Value("int32"),
                    "rating": datasets.Value("int32"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLs)
        if self.config.name == "simplification":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": "valid",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepaths": data_dir, "split": "test"},
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name="full",
                    gen_kwargs={
                        "filepaths": data_dir,
                        "split": "full",
                    },
                ),
            ]

    def _generate_examples(self, filepaths, split):
        """Yields examples."""
        if self.config.name == "simplification":
            files = [open(filepaths[f"asset.{split}.orig"], encoding="utf-8")] + [
                open(filepaths[f"asset.{split}.simp.{i}"], encoding="utf-8") for i in range(10)
            ]
            for id_, lines in enumerate(zip(*files)):
                yield id_, {"original": lines[0].strip(), "simplifications": [line.strip() for line in lines[1:]]}
        else:
            with open(filepaths["human_ratings.csv"], encoding="utf-8") as f:
                reader = csv.reader(f, delimiter=",")
                for id_, row in enumerate(reader):
                    if id_ == 0:
                        keys = row[:]
                    else:
                        res = dict([(k, v) for k, v in zip(keys, row)])
                        for k in ["original_sentence_id", "worker_id", "rating"]:
                            res[k] = int(res[k])
                        yield (id_ - 1), res