File size: 10,479 Bytes
505916b
 
 
 
 
ebe9c9e
505916b
ebe9c9e
505916b
 
 
 
 
 
 
 
f58ff83
505916b
ce7ff16
505916b
6981991
bbaf95d
 
 
 
 
 
 
 
6981991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaf95d
 
e06acf2
bbaf95d
 
e06acf2
bbaf95d
e06acf2
 
 
 
 
 
 
 
 
505916b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58ff83
505916b
 
 
 
 
 
 
 
 
 
 
 
 
83f35c9
505916b
 
 
 
 
 
 
 
83f35c9
505916b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7c2d4
 
 
 
 
 
 
 
 
 
505916b
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaf95d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-foodspotting
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
paperswithcode_id: food-101
pretty_name: Food-101
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': apple_pie
          '1': baby_back_ribs
          '2': baklava
          '3': beef_carpaccio
          '4': beef_tartare
          '5': beet_salad
          '6': beignets
          '7': bibimbap
          '8': bread_pudding
          '9': breakfast_burrito
          '10': bruschetta
          '11': caesar_salad
          '12': cannoli
          '13': caprese_salad
          '14': carrot_cake
          '15': ceviche
          '16': cheesecake
          '17': cheese_plate
          '18': chicken_curry
          '19': chicken_quesadilla
          '20': chicken_wings
          '21': chocolate_cake
          '22': chocolate_mousse
          '23': churros
          '24': clam_chowder
          '25': club_sandwich
          '26': crab_cakes
          '27': creme_brulee
          '28': croque_madame
          '29': cup_cakes
          '30': deviled_eggs
          '31': donuts
          '32': dumplings
          '33': edamame
          '34': eggs_benedict
          '35': escargots
          '36': falafel
          '37': filet_mignon
          '38': fish_and_chips
          '39': foie_gras
          '40': french_fries
          '41': french_onion_soup
          '42': french_toast
          '43': fried_calamari
          '44': fried_rice
          '45': frozen_yogurt
          '46': garlic_bread
          '47': gnocchi
          '48': greek_salad
          '49': grilled_cheese_sandwich
          '50': grilled_salmon
          '51': guacamole
          '52': gyoza
          '53': hamburger
          '54': hot_and_sour_soup
          '55': hot_dog
          '56': huevos_rancheros
          '57': hummus
          '58': ice_cream
          '59': lasagna
          '60': lobster_bisque
          '61': lobster_roll_sandwich
          '62': macaroni_and_cheese
          '63': macarons
          '64': miso_soup
          '65': mussels
          '66': nachos
          '67': omelette
          '68': onion_rings
          '69': oysters
          '70': pad_thai
          '71': paella
          '72': pancakes
          '73': panna_cotta
          '74': peking_duck
          '75': pho
          '76': pizza
          '77': pork_chop
          '78': poutine
          '79': prime_rib
          '80': pulled_pork_sandwich
          '81': ramen
          '82': ravioli
          '83': red_velvet_cake
          '84': risotto
          '85': samosa
          '86': sashimi
          '87': scallops
          '88': seaweed_salad
          '89': shrimp_and_grits
          '90': spaghetti_bolognese
          '91': spaghetti_carbonara
          '92': spring_rolls
          '93': steak
          '94': strawberry_shortcake
          '95': sushi
          '96': tacos
          '97': takoyaki
          '98': tiramisu
          '99': tuna_tartare
          '100': waffles
  splits:
  - name: train
    num_bytes: 3842657187.0
    num_examples: 75750
  - name: validation
    num_bytes: 1275182340.5
    num_examples: 25250
  download_size: 5059972308
  dataset_size: 5117839527.5
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
---

# Dataset Card for Food-101

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Food-101 Dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
- **Repository:**
- **Paper:** [Paper](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

This dataset consists of 101 food categories, with 101'000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels.

### Supported Tasks and Leaderboards

- `image-classification`: The goal of this task is to classify a given image of a dish into one of 101 classes. The leaderboard is available [here](https://paperswithcode.com/sota/fine-grained-image-classification-on-food-101).

### Languages

English

## Dataset Structure

### Data Instances

A sample from the training set is provided below:

```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x276021C5EB8>,
  'label': 23
}
```

### Data Fields

The data instances have the following fields:

- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `label`: an `int` classification label.

<details>
  <summary>Class Label Mappings</summary>

  ```json
  {
    "apple_pie": 0,
    "baby_back_ribs": 1,
    "baklava": 2,
    "beef_carpaccio": 3,
    "beef_tartare": 4,
    "beet_salad": 5,
    "beignets": 6,
    "bibimbap": 7,
    "bread_pudding": 8,
    "breakfast_burrito": 9,
    "bruschetta": 10,
    "caesar_salad": 11,
    "cannoli": 12,
    "caprese_salad": 13,
    "carrot_cake": 14,
    "ceviche": 15,
    "cheesecake": 16,
    "cheese_plate": 17,
    "chicken_curry": 18,
    "chicken_quesadilla": 19,
    "chicken_wings": 20,
    "chocolate_cake": 21,
    "chocolate_mousse": 22,
    "churros": 23,
    "clam_chowder": 24,
    "club_sandwich": 25,
    "crab_cakes": 26,
    "creme_brulee": 27,
    "croque_madame": 28,
    "cup_cakes": 29,
    "deviled_eggs": 30,
    "donuts": 31,
    "dumplings": 32,
    "edamame": 33,
    "eggs_benedict": 34,
    "escargots": 35,
    "falafel": 36,
    "filet_mignon": 37,
    "fish_and_chips": 38,
    "foie_gras": 39,
    "french_fries": 40,
    "french_onion_soup": 41,
    "french_toast": 42,
    "fried_calamari": 43,
    "fried_rice": 44,
    "frozen_yogurt": 45,
    "garlic_bread": 46,
    "gnocchi": 47,
    "greek_salad": 48,
    "grilled_cheese_sandwich": 49,
    "grilled_salmon": 50,
    "guacamole": 51,
    "gyoza": 52,
    "hamburger": 53,
    "hot_and_sour_soup": 54,
    "hot_dog": 55,
    "huevos_rancheros": 56,
    "hummus": 57,
    "ice_cream": 58,
    "lasagna": 59,
    "lobster_bisque": 60,
    "lobster_roll_sandwich": 61,
    "macaroni_and_cheese": 62,
    "macarons": 63,
    "miso_soup": 64,
    "mussels": 65,
    "nachos": 66,
    "omelette": 67,
    "onion_rings": 68,
    "oysters": 69,
    "pad_thai": 70,
    "paella": 71,
    "pancakes": 72,
    "panna_cotta": 73,
    "peking_duck": 74,
    "pho": 75,
    "pizza": 76,
    "pork_chop": 77,
    "poutine": 78,
    "prime_rib": 79,
    "pulled_pork_sandwich": 80,
    "ramen": 81,
    "ravioli": 82,
    "red_velvet_cake": 83,
    "risotto": 84,
    "samosa": 85,
    "sashimi": 86,
    "scallops": 87,
    "seaweed_salad": 88,
    "shrimp_and_grits": 89,
    "spaghetti_bolognese": 90,
    "spaghetti_carbonara": 91,
    "spring_rolls": 92,
    "steak": 93,
    "strawberry_shortcake": 94,
    "sushi": 95,
    "tacos": 96,
    "takoyaki": 97,
    "tiramisu": 98,
    "tuna_tartare": 99,
    "waffles": 100
  }
  ```
</details>


### Data Splits

 
|   |train|validation|
|----------|----:|---------:|
|# of examples|75750|25250|


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

LICENSE AGREEMENT
=================
 - The Food-101 data set consists of images from Foodspotting [1] which are not
   property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
   scientific fair use must be negociated with the respective picture owners
   according to the Foodspotting terms of use [2].

[1] http://www.foodspotting.com/
[2] http://www.foodspotting.com/terms/


### Citation Information

```
 @inproceedings{bossard14,
  title = {Food-101 -- Mining Discriminative Components with Random Forests},
  author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
  booktitle = {European Conference on Computer Vision},
  year = {2014}
}
```

### Contributions

Thanks to [@nateraw](https://github.com/nateraw) for adding this dataset.