|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition""" |
|
|
|
import logging |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{tjong-kim-sang-2002-introduction, |
|
title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition", |
|
author = "Tjong Kim Sang, Erik F.", |
|
booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)", |
|
year = "2002", |
|
url = "https://www.aclweb.org/anthology/W02-2024", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. |
|
|
|
Example: |
|
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] . |
|
|
|
The shared task of CoNLL-2002 concerns language-independent named entity recognition. |
|
We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. |
|
The participants of the shared task will be offered training and test data for at least two languages. |
|
They will use the data for developing a named-entity recognition system that includes a machine learning component. |
|
Information sources other than the training data may be used in this shared task. |
|
We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training). |
|
|
|
The train/validation/test sets are available in Spanish and Dutch. |
|
|
|
For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/ |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/teropa/nlp/master/resources/corpora/conll2002/" |
|
_ES_TRAINING_FILE = "esp.train" |
|
_ES_DEV_FILE = "esp.testa" |
|
_ES_TEST_FILE = "esp.testb" |
|
_NL_TRAINING_FILE = "ned.train" |
|
_NL_DEV_FILE = "ned.testa" |
|
_NL_TEST_FILE = "ned.testb" |
|
|
|
|
|
class Conll2002Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2002""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2002. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Conll2002Config, self).__init__(**kwargs) |
|
|
|
|
|
class Conll2002(datasets.GeneratorBasedBuilder): |
|
"""Conll2002 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Conll2002Config(name="es", version=datasets.Version("1.0.0"), description="Conll2002 Spanish dataset"), |
|
Conll2002Config(name="nl", version=datasets.Version("1.0.0"), description="Conll2002 Dutch dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"AO", |
|
"AQ", |
|
"CC", |
|
"CS", |
|
"DA", |
|
"DE", |
|
"DD", |
|
"DI", |
|
"DN", |
|
"DP", |
|
"DT", |
|
"Faa", |
|
"Fat", |
|
"Fc", |
|
"Fd", |
|
"Fe", |
|
"Fg", |
|
"Fh", |
|
"Fia", |
|
"Fit", |
|
"Fp", |
|
"Fpa", |
|
"Fpt", |
|
"Fs", |
|
"Ft", |
|
"Fx", |
|
"Fz", |
|
"I", |
|
"NC", |
|
"NP", |
|
"P0", |
|
"PD", |
|
"PI", |
|
"PN", |
|
"PP", |
|
"PR", |
|
"PT", |
|
"PX", |
|
"RG", |
|
"RN", |
|
"SP", |
|
"VAI", |
|
"VAM", |
|
"VAN", |
|
"VAP", |
|
"VAS", |
|
"VMG", |
|
"VMI", |
|
"VMM", |
|
"VMN", |
|
"VMP", |
|
"VMS", |
|
"VSG", |
|
"VSI", |
|
"VSM", |
|
"VSN", |
|
"VSP", |
|
"VSS", |
|
"Y", |
|
"Z", |
|
] |
|
) |
|
if self.config.name == "es" |
|
else datasets.features.ClassLabel( |
|
names=["Adj", "Adv", "Art", "Conj", "Int", "Misc", "N", "Num", "Prep", "Pron", "Punc", "V"] |
|
) |
|
), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
"B-MISC", |
|
"I-MISC", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.aclweb.org/anthology/W02-2024/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_ES_TRAINING_FILE if self.config.name == 'es' else _NL_TRAINING_FILE}", |
|
"dev": f"{_URL}{_ES_DEV_FILE if self.config.name == 'es' else _NL_DEV_FILE}", |
|
"test": f"{_URL}{_ES_TEST_FILE if self.config.name == 'es' else _NL_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logging.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
pos_tags = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
pos_tags = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
ner_tags.append(splits[2].rstrip()) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
|