File size: 11,417 Bytes
9741963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import json
import argparse
import hashlib
import requests
import time
from safetensors import safe_open
from tqdm import tqdm
MAX_RETRIES = 3
BACKOFF_BASE = 2
def retry_request(url, timeout=10, desc=""):
attempt = 0
while attempt < MAX_RETRIES:
try:
response = requests.get(url, timeout=timeout)
if response.status_code == 200:
return response
elif response.status_code == 429:
tqdm.write(f"{desc} - Rate limited (HTTP 429). Retrying ({attempt + 1}/{MAX_RETRIES})...")
else:
tqdm.write(f"{desc} - HTTP {response.status_code}. Retrying ({attempt + 1}/{MAX_RETRIES})...")
except requests.exceptions.RequestException as e:
tqdm.write(f"{desc} - Error: {e}. Retrying ({attempt + 1}/{MAX_RETRIES})...")
attempt += 1
time.sleep(BACKOFF_BASE * (2 ** (attempt - 1)))
tqdm.write(f"{desc} - Failed after {MAX_RETRIES} attempts.")
return None
def compute_sha256(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, "rb") as f:
for byte_block in iter(lambda: f.read(4096), b""):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
def extract_local_metadata(safetensors_file):
try:
with safe_open(safetensors_file, framework="pt") as f:
metadata = f.metadata()
return metadata
except Exception as e:
tqdm.write(f"Error reading {safetensors_file}: {e}")
return None
def fetch_civitai_metadata_by_model_id(model_id):
url = f"https://civitai.com/api/v1/models/{model_id}"
response = retry_request(url, desc=f"Fetching metadata for model ID {model_id}")
if response and response.status_code == 200:
return response.json()
return None
def fetch_civitai_metadata_by_hash(file_hash):
url = f"https://civitai.com/api/v1/model-versions/by-hash/{file_hash}"
response = retry_request(url, desc=f"Fetching metadata by hash {file_hash[:10]}...")
if response and response.status_code == 200:
return response.json()
return None
def download_preview_images(images_list, save_dir, base_filename, delay=0.5, image_pbar=None, use_subdir=True):
if use_subdir:
subdir = os.path.join(save_dir, f"{base_filename}_previews")
os.makedirs(subdir, exist_ok=True)
else:
subdir = save_dir # save in same folder
for idx, img_data in enumerate(images_list):
url = img_data.get('url')
if not url:
continue
ext = os.path.splitext(url)[1].split('?')[0]
img_name = f"{base_filename}_preview_{idx+1}{ext}"
# Paths to check (both flat + subdir)
flat_img_path = os.path.join(save_dir, img_name)
subdir_img_path = os.path.join(subdir, img_name)
if os.path.exists(flat_img_path) or os.path.exists(subdir_img_path):
tqdm.write(f"Preview already exists: {img_name} (skipping)")
if image_pbar:
image_pbar.update(1)
continue
desc = f"Downloading media {idx + 1}/{len(images_list)}"
response = retry_request(url, desc=desc)
if response and response.status_code == 200:
img_path = subdir_img_path if use_subdir else flat_img_path
with open(img_path, 'wb') as img_file:
img_file.write(response.content)
tqdm.write(f"Saved preview: {img_path}")
if image_pbar:
image_pbar.update(1)
time.sleep(delay)
def process_directory(root_dir, force=False, scrape_civitai=False, delay=0.5, previews_subdir=True, max_media=None):
safetensors_files = []
for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames:
if filename.endswith(".safetensors"):
safetensors_files.append(os.path.join(dirpath, filename))
print(f"\nFound {len(safetensors_files)} .safetensors files.\n")
with tqdm(total=len(safetensors_files), desc="Total Progress", unit="file") as total_pbar:
for safetensors_path in safetensors_files:
dirpath = os.path.dirname(safetensors_path)
filename = os.path.basename(safetensors_path)
base_filename = os.path.splitext(filename)[0]
json_filename = f"{base_filename}.metadata.json"
json_path = os.path.join(dirpath, json_filename)
if os.path.exists(json_path) and not force:
tqdm.write(f"Skipping (metadata exists): {safetensors_path}")
total_pbar.update(1)
continue
tqdm.write(f"\nProcessing: {safetensors_path}")
metadata = extract_local_metadata(safetensors_path)
combined_metadata = {'local_metadata': metadata if metadata else {}}
civitai_data = None
if scrape_civitai:
civitai_model_id = None
if metadata:
if 'ss_civitai_model_id' in metadata:
civitai_model_id = metadata['ss_civitai_model_id']
elif 'ss_civitai_url' in metadata:
parts = metadata['ss_civitai_url'].split('/')
civitai_model_id = next((part for part in parts if part.isdigit()), None)
if civitai_model_id:
tqdm.write(f"Found model ID in metadata: {civitai_model_id}")
civitai_data = fetch_civitai_metadata_by_model_id(civitai_model_id)
time.sleep(delay)
else:
tqdm.write("No CivitAI model ID found in metadata. Trying hash lookup...")
file_hash = compute_sha256(safetensors_path)
civitai_data = fetch_civitai_metadata_by_hash(file_hash)
time.sleep(delay)
if civitai_data:
civitai_meta = {
'civitai_model_id': civitai_data.get('modelId') or civitai_data.get('id'),
'civitai_model_version_id': civitai_data.get('id'),
'civitai_name': civitai_data.get('name'),
'description': civitai_data.get('description'),
'tags': civitai_data.get('tags'),
'trainedWords': civitai_data.get('trainedWords'),
'images': civitai_data.get('images')
}
combined_metadata['civitai_metadata'] = civitai_meta
images_list = civitai_meta.get('images', [])
if images_list:
# Apply max_media logic
if max_media == 0:
tqdm.write("Skipping download of preview images/videos (user selected 0).")
else:
if max_media is not None:
images_list = images_list[:max_media]
with tqdm(total=len(images_list), desc="Image/Video Progress", leave=False) as image_pbar:
download_preview_images(
images_list,
dirpath,
base_filename,
delay=delay,
image_pbar=image_pbar,
use_subdir=previews_subdir
)
else:
tqdm.write("No preview images/videos found.")
else:
tqdm.write("No CivitAI data found (model ID or hash lookup failed).")
with open(json_path, "w", encoding="utf-8") as f:
json.dump(combined_metadata, f, indent=4, ensure_ascii=False)
tqdm.write(f"Saved metadata to: {json_path}")
total_pbar.update(1)
def interactive_menu():
print("\n=== LoRA Metadata Scraper Config ===\n")
scrape_civitai = input("A) Scrape CivitAI? (Y/N) [Default: N]: ").strip().lower() == 'y'
delay_choice = input("B) Use default delay (0.5s), no delay (0), or custom? (D/N/C) [Default: D]: ").strip().lower()
if delay_choice == 'n':
delay = 0.0
elif delay_choice == 'c':
delay = float(input("Enter delay in seconds (e.g., 0.5): ").strip())
else:
delay = 0.5
force = input("C) Force re-scrape if metadata exists? (Y/N) [Default: N]: ").strip().lower() == 'y'
loras_only = input("D) Scan only the LoRAs folder? (Y/N) [Default: Y]: ").strip().lower() != 'n'
previews_subdir = input("E) Save preview images in a subdirectory? (Y/N) [Default: Y]: ").strip().lower() != 'n'
media_choice = input("F) How many preview images/videos to download? (A=All [default], N=None, X=Number): ").strip().lower()
if media_choice == 'n':
max_media = 0
elif media_choice == 'a' or media_choice == '':
max_media = None
else:
try:
max_media = int(media_choice)
except ValueError:
max_media = None # fallback to all
print("\n=== Starting with your selected options ===\n")
return force, scrape_civitai, delay, loras_only, previews_subdir, max_media
if __name__ == "__main__":
print(">>> Script started")
parser = argparse.ArgumentParser(description="Scrape and save metadata for .safetensors files.")
parser.add_argument("--force", action="store_true", help="Force re-scrape even if metadata file exists.")
parser.add_argument("--scrape-civitai", action="store_true", help="Enable scraping CivitAI metadata + images.")
parser.add_argument("--delay", type=float, default=0.5, help="Delay time (seconds) between API/image steps (default: 0.5s).")
parser.add_argument("--interactive", action="store_true", help="Run in interactive mode.")
parser.add_argument("--loras-only", action="store_true", help="Scan only the LoRAs folder (models/loras).")
parser.add_argument("--previews-subdir", dest="previews_subdir", action="store_true", help="Save preview images in a subdirectory.")
parser.add_argument("--no-previews-subdir", dest="previews_subdir", action="store_false", help="Save preview images in the same folder.")
parser.add_argument("--max-media", type=int, default=None, help="Max number of preview images/videos to download (0 = none).")
parser.set_defaults(previews_subdir=True)
args = parser.parse_args()
if args.interactive:
force, scrape_civitai, delay, loras_only, previews_subdir, max_media = interactive_menu()
else:
force, scrape_civitai, delay, loras_only, previews_subdir, max_media = (
args.force,
args.scrape_civitai,
args.delay,
args.loras_only,
args.previews_subdir,
args.max_media
)
script_dir = os.path.dirname(os.path.abspath(__file__))
if loras_only:
comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", "..", "models", "loras"))
else:
comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", ".."))
tqdm.write(f"Scanning directory: {comfyui_dir}")
process_directory(
comfyui_dir,
force=force,
scrape_civitai=scrape_civitai,
delay=delay,
previews_subdir=previews_subdir,
max_media=max_media
)
|