File size: 11,417 Bytes
9741963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import json
import argparse
import hashlib
import requests
import time
from safetensors import safe_open
from tqdm import tqdm

MAX_RETRIES = 3
BACKOFF_BASE = 2

def retry_request(url, timeout=10, desc=""):
    attempt = 0
    while attempt < MAX_RETRIES:
        try:
            response = requests.get(url, timeout=timeout)
            if response.status_code == 200:
                return response
            elif response.status_code == 429:
                tqdm.write(f"{desc} - Rate limited (HTTP 429). Retrying ({attempt + 1}/{MAX_RETRIES})...")
            else:
                tqdm.write(f"{desc} - HTTP {response.status_code}. Retrying ({attempt + 1}/{MAX_RETRIES})...")
        except requests.exceptions.RequestException as e:
            tqdm.write(f"{desc} - Error: {e}. Retrying ({attempt + 1}/{MAX_RETRIES})...")

        attempt += 1
        time.sleep(BACKOFF_BASE * (2 ** (attempt - 1)))
    tqdm.write(f"{desc} - Failed after {MAX_RETRIES} attempts.")
    return None

def compute_sha256(file_path):
    sha256_hash = hashlib.sha256()
    with open(file_path, "rb") as f:
        for byte_block in iter(lambda: f.read(4096), b""):
            sha256_hash.update(byte_block)
    return sha256_hash.hexdigest()

def extract_local_metadata(safetensors_file):
    try:
        with safe_open(safetensors_file, framework="pt") as f:
            metadata = f.metadata()
        return metadata
    except Exception as e:
        tqdm.write(f"Error reading {safetensors_file}: {e}")
        return None

def fetch_civitai_metadata_by_model_id(model_id):
    url = f"https://civitai.com/api/v1/models/{model_id}"
    response = retry_request(url, desc=f"Fetching metadata for model ID {model_id}")
    if response and response.status_code == 200:
        return response.json()
    return None

def fetch_civitai_metadata_by_hash(file_hash):
    url = f"https://civitai.com/api/v1/model-versions/by-hash/{file_hash}"
    response = retry_request(url, desc=f"Fetching metadata by hash {file_hash[:10]}...")
    if response and response.status_code == 200:
        return response.json()
    return None

def download_preview_images(images_list, save_dir, base_filename, delay=0.5, image_pbar=None, use_subdir=True):
    if use_subdir:
        subdir = os.path.join(save_dir, f"{base_filename}_previews")
        os.makedirs(subdir, exist_ok=True)
    else:
        subdir = save_dir  # save in same folder

    for idx, img_data in enumerate(images_list):
        url = img_data.get('url')
        if not url:
            continue
        ext = os.path.splitext(url)[1].split('?')[0]
        img_name = f"{base_filename}_preview_{idx+1}{ext}"

        # Paths to check (both flat + subdir)
        flat_img_path = os.path.join(save_dir, img_name)
        subdir_img_path = os.path.join(subdir, img_name)

        if os.path.exists(flat_img_path) or os.path.exists(subdir_img_path):
            tqdm.write(f"Preview already exists: {img_name} (skipping)")
            if image_pbar:
                image_pbar.update(1)
            continue

        desc = f"Downloading media {idx + 1}/{len(images_list)}"
        response = retry_request(url, desc=desc)
        if response and response.status_code == 200:
            img_path = subdir_img_path if use_subdir else flat_img_path
            with open(img_path, 'wb') as img_file:
                img_file.write(response.content)
            tqdm.write(f"Saved preview: {img_path}")
        if image_pbar:
            image_pbar.update(1)
        time.sleep(delay)

def process_directory(root_dir, force=False, scrape_civitai=False, delay=0.5, previews_subdir=True, max_media=None):
    safetensors_files = []
    for dirpath, dirnames, filenames in os.walk(root_dir):
        for filename in filenames:
            if filename.endswith(".safetensors"):
                safetensors_files.append(os.path.join(dirpath, filename))

    print(f"\nFound {len(safetensors_files)} .safetensors files.\n")

    with tqdm(total=len(safetensors_files), desc="Total Progress", unit="file") as total_pbar:
        for safetensors_path in safetensors_files:
            dirpath = os.path.dirname(safetensors_path)
            filename = os.path.basename(safetensors_path)
            base_filename = os.path.splitext(filename)[0]
            json_filename = f"{base_filename}.metadata.json"
            json_path = os.path.join(dirpath, json_filename)

            if os.path.exists(json_path) and not force:
                tqdm.write(f"Skipping (metadata exists): {safetensors_path}")
                total_pbar.update(1)
                continue

            tqdm.write(f"\nProcessing: {safetensors_path}")
            metadata = extract_local_metadata(safetensors_path)
            combined_metadata = {'local_metadata': metadata if metadata else {}}

            civitai_data = None

            if scrape_civitai:
                civitai_model_id = None
                if metadata:
                    if 'ss_civitai_model_id' in metadata:
                        civitai_model_id = metadata['ss_civitai_model_id']
                    elif 'ss_civitai_url' in metadata:
                        parts = metadata['ss_civitai_url'].split('/')
                        civitai_model_id = next((part for part in parts if part.isdigit()), None)
                
                if civitai_model_id:
                    tqdm.write(f"Found model ID in metadata: {civitai_model_id}")
                    civitai_data = fetch_civitai_metadata_by_model_id(civitai_model_id)
                    time.sleep(delay)
                else:
                    tqdm.write("No CivitAI model ID found in metadata. Trying hash lookup...")
                    file_hash = compute_sha256(safetensors_path)
                    civitai_data = fetch_civitai_metadata_by_hash(file_hash)
                    time.sleep(delay)

                if civitai_data:
                    civitai_meta = {
                        'civitai_model_id': civitai_data.get('modelId') or civitai_data.get('id'),
                        'civitai_model_version_id': civitai_data.get('id'),
                        'civitai_name': civitai_data.get('name'),
                        'description': civitai_data.get('description'),
                        'tags': civitai_data.get('tags'),
                        'trainedWords': civitai_data.get('trainedWords'),
                        'images': civitai_data.get('images')
                    }
                    combined_metadata['civitai_metadata'] = civitai_meta

                    images_list = civitai_meta.get('images', [])
                    if images_list:
                        # Apply max_media logic
                        if max_media == 0:
                            tqdm.write("Skipping download of preview images/videos (user selected 0).")
                        else:
                            if max_media is not None:
                                images_list = images_list[:max_media]
                            with tqdm(total=len(images_list), desc="Image/Video Progress", leave=False) as image_pbar:
                                download_preview_images(
                                    images_list,
                                    dirpath,
                                    base_filename,
                                    delay=delay,
                                    image_pbar=image_pbar,
                                    use_subdir=previews_subdir
                                )
                    else:
                        tqdm.write("No preview images/videos found.")
                else:
                    tqdm.write("No CivitAI data found (model ID or hash lookup failed).")

            with open(json_path, "w", encoding="utf-8") as f:
                json.dump(combined_metadata, f, indent=4, ensure_ascii=False)
            tqdm.write(f"Saved metadata to: {json_path}")
            total_pbar.update(1)

def interactive_menu():
    print("\n=== LoRA Metadata Scraper Config ===\n")
    scrape_civitai = input("A) Scrape CivitAI? (Y/N) [Default: N]: ").strip().lower() == 'y'
    delay_choice = input("B) Use default delay (0.5s), no delay (0), or custom? (D/N/C) [Default: D]: ").strip().lower()
    if delay_choice == 'n':
        delay = 0.0
    elif delay_choice == 'c':
        delay = float(input("Enter delay in seconds (e.g., 0.5): ").strip())
    else:
        delay = 0.5
    force = input("C) Force re-scrape if metadata exists? (Y/N) [Default: N]: ").strip().lower() == 'y'
    loras_only = input("D) Scan only the LoRAs folder? (Y/N) [Default: Y]: ").strip().lower() != 'n'
    previews_subdir = input("E) Save preview images in a subdirectory? (Y/N) [Default: Y]: ").strip().lower() != 'n'
    media_choice = input("F) How many preview images/videos to download? (A=All [default], N=None, X=Number): ").strip().lower()
    if media_choice == 'n':
        max_media = 0
    elif media_choice == 'a' or media_choice == '':
        max_media = None
    else:
        try:
            max_media = int(media_choice)
        except ValueError:
            max_media = None  # fallback to all
    print("\n=== Starting with your selected options ===\n")
    return force, scrape_civitai, delay, loras_only, previews_subdir, max_media

if __name__ == "__main__":
    print(">>> Script started")

    parser = argparse.ArgumentParser(description="Scrape and save metadata for .safetensors files.")
    parser.add_argument("--force", action="store_true", help="Force re-scrape even if metadata file exists.")
    parser.add_argument("--scrape-civitai", action="store_true", help="Enable scraping CivitAI metadata + images.")
    parser.add_argument("--delay", type=float, default=0.5, help="Delay time (seconds) between API/image steps (default: 0.5s).")
    parser.add_argument("--interactive", action="store_true", help="Run in interactive mode.")
    parser.add_argument("--loras-only", action="store_true", help="Scan only the LoRAs folder (models/loras).")
    parser.add_argument("--previews-subdir", dest="previews_subdir", action="store_true", help="Save preview images in a subdirectory.")
    parser.add_argument("--no-previews-subdir", dest="previews_subdir", action="store_false", help="Save preview images in the same folder.")
    parser.add_argument("--max-media", type=int, default=None, help="Max number of preview images/videos to download (0 = none).")
    parser.set_defaults(previews_subdir=True)

    args = parser.parse_args()

    if args.interactive:
        force, scrape_civitai, delay, loras_only, previews_subdir, max_media = interactive_menu()
    else:
        force, scrape_civitai, delay, loras_only, previews_subdir, max_media = (
            args.force,
            args.scrape_civitai,
            args.delay,
            args.loras_only,
            args.previews_subdir,
            args.max_media
        )

    script_dir = os.path.dirname(os.path.abspath(__file__))
    if loras_only:
        comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", "..", "models", "loras"))
    else:
        comfyui_dir = os.path.abspath(os.path.join(script_dir, "..", ".."))

    tqdm.write(f"Scanning directory: {comfyui_dir}")

    process_directory(
        comfyui_dir,
        force=force,
        scrape_civitai=scrape_civitai,
        delay=delay,
        previews_subdir=previews_subdir,
        max_media=max_media
    )