File size: 6,716 Bytes
58c54d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# adapted from https://github.com/jzhangbs/DTUeval-python
import numpy as np
import open3d as o3d
import sklearn.neighbors as skln
from tqdm import tqdm
from scipy.io import loadmat
import multiprocessing as mp
import argparse

def sample_single_tri(input_):
    n1, n2, v1, v2, tri_vert = input_
    c = np.mgrid[:n1+1, :n2+1]
    c += 0.5
    c[0] /= max(n1, 1e-7)
    c[1] /= max(n2, 1e-7)
    c = np.transpose(c, (1,2,0))
    k = c[c.sum(axis=-1) < 1]  # m2
    q = v1 * k[:,:1] + v2 * k[:,1:] + tri_vert
    return q

def write_vis_pcd(file, points, colors):
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    pcd.colors = o3d.utility.Vector3dVector(colors)
    o3d.io.write_point_cloud(file, pcd)

if __name__ == '__main__':
    mp.freeze_support()

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default='data_in.ply')
    parser.add_argument('--scan', type=int, default=1)
    parser.add_argument('--mode', type=str, default='mesh', choices=['mesh', 'pcd'])
    parser.add_argument('--dataset_dir', type=str, default='.')
    parser.add_argument('--vis_out_dir', type=str, default='.')
    parser.add_argument('--downsample_density', type=float, default=0.2)
    parser.add_argument('--patch_size', type=float, default=60)
    parser.add_argument('--max_dist', type=float, default=20)
    parser.add_argument('--visualize_threshold', type=float, default=10)
    args = parser.parse_args()

    thresh = args.downsample_density
    if args.mode == 'mesh':
        pbar = tqdm(total=9)
        pbar.set_description('read data mesh')
        data_mesh = o3d.io.read_triangle_mesh(args.data)

        vertices = np.asarray(data_mesh.vertices)
        triangles = np.asarray(data_mesh.triangles)
        tri_vert = vertices[triangles]

        pbar.update(1)
        pbar.set_description('sample pcd from mesh')
        v1 = tri_vert[:,1] - tri_vert[:,0]
        v2 = tri_vert[:,2] - tri_vert[:,0]
        l1 = np.linalg.norm(v1, axis=-1, keepdims=True)
        l2 = np.linalg.norm(v2, axis=-1, keepdims=True)
        area2 = np.linalg.norm(np.cross(v1, v2), axis=-1, keepdims=True)
        non_zero_area = (area2 > 0)[:,0]
        l1, l2, area2, v1, v2, tri_vert = [
            arr[non_zero_area] for arr in [l1, l2, area2, v1, v2, tri_vert]
        ]
        thr = thresh * np.sqrt(l1 * l2 / area2)
        n1 = np.floor(l1 / thr)
        n2 = np.floor(l2 / thr)

        with mp.Pool() as mp_pool:
            new_pts = mp_pool.map(sample_single_tri, ((n1[i,0], n2[i,0], v1[i:i+1], v2[i:i+1], tri_vert[i:i+1,0]) for i in range(len(n1))), chunksize=1024)

        new_pts = np.concatenate(new_pts, axis=0)
        data_pcd = np.concatenate([vertices, new_pts], axis=0)
    
    elif args.mode == 'pcd':
        pbar = tqdm(total=8)
        pbar.set_description('read data pcd')
        data_pcd_o3d = o3d.io.read_point_cloud(args.data)
        data_pcd = np.asarray(data_pcd_o3d.points)

    pbar.update(1)
    pbar.set_description('random shuffle pcd index')
    shuffle_rng = np.random.default_rng()
    shuffle_rng.shuffle(data_pcd, axis=0)

    pbar.update(1)
    pbar.set_description('downsample pcd')
    nn_engine = skln.NearestNeighbors(n_neighbors=1, radius=thresh, algorithm='kd_tree', n_jobs=-1)
    nn_engine.fit(data_pcd)
    rnn_idxs = nn_engine.radius_neighbors(data_pcd, radius=thresh, return_distance=False)
    mask = np.ones(data_pcd.shape[0], dtype=np.bool_)
    for curr, idxs in enumerate(rnn_idxs):
        if mask[curr]:
            mask[idxs] = 0
            mask[curr] = 1
    data_down = data_pcd[mask]

    pbar.update(1)
    pbar.set_description('masking data pcd')
    obs_mask_file = loadmat(f'{args.dataset_dir}/ObsMask/ObsMask{args.scan}_10.mat')
    ObsMask, BB, Res = [obs_mask_file[attr] for attr in ['ObsMask', 'BB', 'Res']]
    BB = BB.astype(np.float32)

    patch = args.patch_size
    inbound = ((data_down >= BB[:1]-patch) & (data_down < BB[1:]+patch*2)).sum(axis=-1) ==3
    data_in = data_down[inbound]

    data_grid = np.around((data_in - BB[:1]) / Res).astype(np.int32)
    grid_inbound = ((data_grid >= 0) & (data_grid < np.expand_dims(ObsMask.shape, 0))).sum(axis=-1) ==3
    data_grid_in = data_grid[grid_inbound]
    in_obs = ObsMask[data_grid_in[:,0], data_grid_in[:,1], data_grid_in[:,2]].astype(np.bool_)
    data_in_obs = data_in[grid_inbound][in_obs]

    pbar.update(1)
    pbar.set_description('read STL pcd')
    stl_pcd = o3d.io.read_point_cloud(f'{args.dataset_dir}/Points/stl/stl{args.scan:03}_total.ply')
    stl = np.asarray(stl_pcd.points)

    pbar.update(1)
    pbar.set_description('compute data2stl')
    nn_engine.fit(stl)
    dist_d2s, idx_d2s = nn_engine.kneighbors(data_in_obs, n_neighbors=1, return_distance=True)
    max_dist = args.max_dist
    mean_d2s = dist_d2s[dist_d2s < max_dist].mean()

    pbar.update(1)
    pbar.set_description('compute stl2data')
    ground_plane = loadmat(f'{args.dataset_dir}/ObsMask/Plane{args.scan}.mat')['P']

    stl_hom = np.concatenate([stl, np.ones_like(stl[:,:1])], -1)
    above = (ground_plane.reshape((1,4)) * stl_hom).sum(-1) > 0
    stl_above = stl[above]

    nn_engine.fit(data_in)
    dist_s2d, idx_s2d = nn_engine.kneighbors(stl_above, n_neighbors=1, return_distance=True)
    mean_s2d = dist_s2d[dist_s2d < max_dist].mean()

    pbar.update(1)
    pbar.set_description('visualize error')
    vis_dist = args.visualize_threshold
    R = np.array([[1,0,0]], dtype=np.float64)
    G = np.array([[0,1,0]], dtype=np.float64)
    B = np.array([[0,0,1]], dtype=np.float64)
    W = np.array([[1,1,1]], dtype=np.float64)
    data_color = np.tile(B, (data_down.shape[0], 1))
    data_alpha = dist_d2s.clip(max=vis_dist) / vis_dist
    data_color[ np.where(inbound)[0][grid_inbound][in_obs] ] = R * data_alpha + W * (1-data_alpha)
    data_color[ np.where(inbound)[0][grid_inbound][in_obs][dist_d2s[:,0] >= max_dist] ] = G
    write_vis_pcd(f'{args.vis_out_dir}/vis_{args.scan:03}_d2s.ply', data_down, data_color)
    stl_color = np.tile(B, (stl.shape[0], 1))
    stl_alpha = dist_s2d.clip(max=vis_dist) / vis_dist
    stl_color[ np.where(above)[0] ] = R * stl_alpha + W * (1-stl_alpha)
    stl_color[ np.where(above)[0][dist_s2d[:,0] >= max_dist] ] = G
    write_vis_pcd(f'{args.vis_out_dir}/vis_{args.scan:03}_s2d.ply', stl, stl_color)

    pbar.update(1)
    pbar.set_description('done')
    pbar.close()
    over_all = (mean_d2s + mean_s2d) / 2
    print(mean_d2s, mean_s2d, over_all)
    
    import json
    with open(f'{args.vis_out_dir}/results.json', 'w') as fp:
        json.dump({
            'mean_d2s': mean_d2s,
            'mean_s2d': mean_s2d,
            'overall': over_all,
        }, fp, indent=True)