File size: 5,994 Bytes
8bf74e5
 
 
 
 
 
 
 
 
96b5bb6
 
 
 
 
 
 
8bf74e5
 
 
96b5bb6
8bf74e5
96b5bb6
8bf74e5
 
96b5bb6
8bf74e5
 
 
 
 
 
96b5bb6
 
8bf74e5
 
 
 
 
 
 
96b5bb6
8bf74e5
 
 
 
96b5bb6
 
8bf74e5
96b5bb6
8bf74e5
 
 
96b5bb6
8bf74e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b5bb6
 
8bf74e5
 
96b5bb6
8bf74e5
96b5bb6
 
8bf74e5
 
 
 
 
 
 
 
 
 
 
 
96b5bb6
8bf74e5
 
96b5bb6
8bf74e5
96b5bb6
8bf74e5
 
 
 
 
 
 
 
 
 
96b5bb6
8bf74e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""Scientific fact-checking dataset. Verifies claims based on citation sentences
using evidence from the cited abstracts. Formatted as a paragraph-level entailment task."""


import datasets
import json


_CITATION = """\
@article{Saakyan2021COVIDFactFE,
  title={COVID-Fact: Fact Extraction and Verification of Real-World Claims on COVID-19 Pandemic},
  author={Arkadiy Saakyan and Tuhin Chakrabarty and Smaranda Muresan},
  journal={ArXiv},
  year={2021},
  volume={abs/2106.03794},
  url={https://api.semanticscholar.org/CorpusID:235364036}
}
"""


_DESCRIPTION = """\
COVID-FACT is a dataset of claims about COVID-19. For this version of the dataset, we follow the preprocessing from the MultiVerS modeling paper https://github.com/dwadden/multivers, verifying claims against abstracts of scientific research articles. Entailment labels and rationales are included.
"""

_URL = "https://scifact.s3.us-west-2.amazonaws.com/longchecker/latest/data.tar.gz"


def flatten(xss):
    return [x for xs in xss for x in xs]


class CovidFactEntailmentConfig(datasets.BuilderConfig):
    """builderconfig for covidfact"""

    def __init__(self, **kwargs):
        """

        Args:
            **kwargs: keyword arguments forwarded to super.
        """
        super(CovidFactEntailmentConfig, self).__init__(
            version=datasets.Version("1.0.0", ""), **kwargs
        )


class CovidFactEntailment(datasets.GeneratorBasedBuilder):
    """TODO(covidfact): Short description of my dataset."""

    # TODO(covidfact): Set up version.
    VERSION = datasets.Version("0.1.0")

    def _info(self):
        # TODO(covidfact): Specifies the datasets.DatasetInfo object

        features = {
            "claim_id": datasets.Value("int32"),
            "claim": datasets.Value("string"),
            "abstract_id": datasets.Value("int32"),
            "title": datasets.Value("string"),
            "abstract": datasets.features.Sequence(datasets.Value("string")),
            "verdict": datasets.Value("string"),
            "evidence": datasets.features.Sequence(datasets.Value("int32")),
        }

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                features
                # These are the features of your dataset like images, labels ...
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://scifact.apps.allenai.org/",
            citation=_CITATION,
        )

    @staticmethod
    def _read_tar_file(f):
        res = []
        for row in f:
            this_row = json.loads(row.decode("utf-8"))
            res.append(this_row)

        return res

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(scifact): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        archive = dl_manager.download(_URL)
        for path, f in dl_manager.iter_archive(archive):
            # The claims are too similar to paper titles; don't include.
            if path == "data/covidfact/corpus_without_titles.jsonl":
                corpus = self._read_tar_file(f)
                corpus = {x["doc_id"]: x for x in corpus}
            elif path == "data/covidfact/claims_train.jsonl":
                claims_train = self._read_tar_file(f)
            elif path == "data/covidfact/claims_test.jsonl":
                claims_test = self._read_tar_file(f)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "claims": claims_train,
                    "corpus": corpus,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "claims": claims_test,
                    "corpus": corpus,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, claims, corpus, split):
        """Yields examples."""
        # Loop over claims and put evidence together with claim.
        id_ = -1  # Will increment to 0 on first iteration.
        for claim in claims:
            evidence = {int(k): v for k, v in claim["evidence"].items()}
            for cited_doc_id in claim["doc_ids"]:
                cited_doc = corpus[cited_doc_id]
                abstract_sents = [sent.strip() for sent in cited_doc["abstract"]]

                if cited_doc_id in evidence:
                    this_evidence = evidence[cited_doc_id]
                    verdict = this_evidence[0][
                        "label"
                    ]  # Can take first evidence since all labels are same.
                    evidence_sents = flatten(
                        [entry["sentences"] for entry in this_evidence]
                    )
                else:
                    verdict = "NEI"
                    evidence_sents = []

                instance = {
                    "claim_id": claim["id"],
                    "claim": claim["claim"],
                    "abstract_id": cited_doc_id,
                    "title": cited_doc["title"],
                    "abstract": abstract_sents,
                    "verdict": verdict,
                    "evidence": evidence_sents,
                }

                id_ += 1
                yield id_, instance