File size: 7,310 Bytes
fe79d42
 
 
 
 
8852f54
fe79d42
533dd7a
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f48d8
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533dd7a
 
fe79d42
 
 
 
 
 
8852f54
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8852f54
 
 
23f48d8
fe79d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533dd7a
fe79d42
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from dora import DoraStatus
import pylcs
import os
import pyarrow as pa
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

import gc  # garbage collect library
import re
import time

CHATGPT = False
MODEL_NAME_OR_PATH = "TheBloke/deepseek-coder-6.7B-instruct-GPTQ"

CODE_MODIFIER_TEMPLATE = """
### Instruction
Respond with one block of modified code only in ```python block. No explaination.

```python
{code}
```

{user_message}

### Response:
"""


model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True,
    revision="main",
    max_length=1024,
).to("cuda:0")


tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)


def extract_python_code_blocks(text):
    """
    Extracts Python code blocks from the given text that are enclosed in triple backticks with a python language identifier.

    Parameters:
    - text: A string that may contain one or more Python code blocks.

    Returns:
    - A list of strings, where each string is a block of Python code extracted from the text.
    """
    pattern = r"```python\n(.*?)\n```"
    matches = re.findall(pattern, text, re.DOTALL)
    if len(matches) == 0:
        pattern = r"```python\n(.*?)(?:\n```|$)"
        matches = re.findall(pattern, text, re.DOTALL)
        if len(matches) == 0:
            return [text]
        else:
            matches = [remove_last_line(matches[0])]

    return matches


def remove_last_line(python_code):
    """
    Removes the last line from a given string of Python code.

    Parameters:
    - python_code: A string representing Python source code.

    Returns:
    - A string with the last line removed.
    """
    lines = python_code.split("\n")  # Split the string into lines
    if lines:  # Check if there are any lines to remove
        lines.pop()  # Remove the last line
    return "\n".join(lines)  # Join the remaining lines back into a string


def calculate_similarity(source, target):
    """
    Calculate a similarity score between the source and target strings.
    This uses the edit distance relative to the length of the strings.
    """
    edit_distance = pylcs.edit_distance(source, target)
    max_length = max(len(source), len(target))
    # Normalize the score by the maximum possible edit distance (the length of the longer string)
    similarity = 1 - (edit_distance / max_length)
    return similarity


def find_best_match_location(source_code, target_block):
    """
    Find the best match for the target_block within the source_code by searching line by line,
    considering blocks of varying lengths.
    """
    source_lines = source_code.split("\n")
    target_lines = target_block.split("\n")

    best_similarity = 0
    best_start_index = 0
    best_end_index = -1

    # Iterate over the source lines to find the best matching range for all lines in target_block
    for start_index in range(len(source_lines) - len(target_lines) + 1):
        for end_index in range(start_index + len(target_lines), len(source_lines) + 1):
            current_window = "\n".join(source_lines[start_index:end_index])
            current_similarity = calculate_similarity(current_window, target_block)
            if current_similarity > best_similarity:
                best_similarity = current_similarity
                best_start_index = start_index
                best_end_index = end_index

    # Convert line indices back to character indices for replacement
    char_start_index = len("\n".join(source_lines[:best_start_index])) + (
        1 if best_start_index > 0 else 0
    )
    char_end_index = len("\n".join(source_lines[:best_end_index]))

    return char_start_index, char_end_index


def replace_code_in_source(source_code, replacement_block: str):
    """
    Replace the best matching block in the source_code with the replacement_block, considering variable block lengths.
    """
    replacement_block = extract_python_code_blocks(replacement_block)[0]
    start_index, end_index = find_best_match_location(source_code, replacement_block)
    if start_index != -1 and end_index != -1:
        # Replace the best matching part with the replacement block
        new_source = (
            source_code[:start_index] + replacement_block + source_code[end_index:]
        )
        return new_source
    else:
        return source_code


class Operator:
    def __init__(self) -> None:
        self.policy_init = False

    def on_event(
        self,
        dora_event,
        send_output,
    ) -> DoraStatus:
        global model, tokenizer
        if dora_event["type"] == "INPUT" and dora_event["id"] == "text":
            input = dora_event["value"][0].as_py()
            # Path to the current file
            current_file_path = __file__

            # Directory of the current file
            current_directory = os.path.dirname(current_file_path)
            path = current_directory + "/policy.py"

            with open(path, "r", encoding="utf8") as f:
                code = f.read()

            user_message = input
            start_llm = time.time()

            output = self.ask_llm(
                CODE_MODIFIER_TEMPLATE.format(code=code, user_message=user_message)
            )

            source_code = replace_code_in_source(code, output)
            print("response time:", time.time() - start_llm, flush=True)

            print("response: ", output, flush=True)
            with open(path, "w") as file:
                file.write(source_code)

            gc.collect()
            torch.cuda.empty_cache()

        return DoraStatus.CONTINUE

    def ask_llm(self, prompt):

        # Generate output
        # prompt = PROMPT_TEMPLATE.format(system_message=system_message, prompt=prompt))
        input = tokenizer(prompt, return_tensors="pt")
        input_ids = input.input_ids.cuda()

        # add attention mask here
        attention_mask = input.attention_mask.cuda()

        output = model.generate(
            inputs=input_ids,
            temperature=0.7,
            do_sample=True,
            top_p=0.95,
            top_k=40,
            max_new_tokens=512,
            attention_mask=attention_mask,
            eos_token_id=tokenizer.eos_token_id,
        )
        # Get the tokens from the output, decode them, print them

        # Get text between im_start and im_end
        return tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt) :]


if __name__ == "__main__":
    op = Operator()

    # Path to the current file
    current_file_path = __file__

    # Directory of the current file
    current_directory = os.path.dirname(current_file_path)

    path = current_directory + "/policy.py"
    with open(path, "r", encoding="utf8") as f:
        raw = f.read()

    op.on_event(
        {
            "type": "INPUT",
            "id": "text",
            "value": pa.array(
                [
                    {
                        "path": path,
                        "user_message": "go to the office, and then, say I know that you work hard, so I brought some a chocolate, wait for 10 seconds, and then play the office song and then go to the kitchen,",
                    },
                ]
            ),
            "metadata": [],
        },
        print,
    )