File size: 3,349 Bytes
357c750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import requests
import torch
from PIL import Image
from io import BytesIO

from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig


MODE = "quantized"
DEVICE = "cuda"
PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible")
BAD_WORDS_IDS = PROCESSOR.tokenizer(
    ["<image>", "<fake_token_around_image>"], add_special_tokens=False
).input_ids
EOS_WORDS_IDS = PROCESSOR.tokenizer(
    "<end_of_utterance>", add_special_tokens=False
).input_ids + [PROCESSOR.tokenizer.eos_token_id]

# Load model
if MODE == "regular":
    model = AutoModelForVision2Seq.from_pretrained(
        "HuggingFaceM4/idefics2-tfrm-compatible",
        torch_dtype=torch.float16,
        trust_remote_code=True,
        _attn_implementation="flash_attention_2",
        revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d",
    ).to(DEVICE)
elif MODE == "quantized":
    quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
    model = AutoModelForVision2Seq.from_pretrained(
        quant_path, trust_remote_code=True
    ).to(DEVICE)
elif MODE == "fused_quantized":
    quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ"
    quantization_config = AwqConfig(
        bits=4,
        fuse_max_seq_len=4096,
        modules_to_fuse={
            "attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
            "mlp": ["gate_proj", "up_proj", "down_proj"],
            "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
            "use_alibi": False,
            "num_attention_heads": 32,
            "num_key_value_heads": 8,
            "hidden_size": 4096,
        },
    )
    model = AutoModelForVision2Seq.from_pretrained(
        quant_path,
        quantization_config=quantization_config,
        trust_remote_code=True,
    ).to(DEVICE)
else:
    raise ValueError("Unknown mode")


def download_image(url):
    try:
        # Send a GET request to the URL to download the image
        response = requests.get(url)
        # Check if the request was successful (status code 200)
        if response.status_code == 200:
            # Open the image using PIL
            image = Image.open(BytesIO(response.content))
            # Return the PIL image object
            return image
        else:
            print(f"Failed to download image. Status code: {response.status_code}")
            return None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None


# Create inputs
image1 = download_image(
    "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
)


def ask_vlm(image, instruction):
    prompts = [
        "User:",
        image,
        f"{instruction}.<end_of_utterance>\n",
        "Assistant:",
    ]
    inputs = PROCESSOR(prompts)
    inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()}
    generated_ids = model.generate(
        **inputs,
        bad_words_ids=BAD_WORDS_IDS,
        max_new_tokens=100,
    )
    generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)
    return generated_texts


import time

model.eval()
now = time.time()
print(ask_vlm(image1, "What is this?")[0].split("\nAssistant: ")[1])

print("resp:", time.time() - now)
import time

now = time.time()

print(ask_vlm(image1, "What is this?")[0].split("\nAssistant: ")[1])