File size: 1,295 Bytes
96338ba 4d8a624 96338ba a0116e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
---
license: afl-3.0
task_categories:
- object-detection
language:
- en
---
# Annotation
Each date in the Products-Real and Products-Synth datasets is annotated with class, bounding box coordinates, date transcription, image width, and height. There are four classes defined: date, due, prod, and code in the training sets. Expiration dates in the test set of Product-Real are specifically labeled as "exp" class for easy evaluation, unlike the training set of Product-Real. Each component in the Date-Real and Date-Synth datasets is annotated with class, bounding box, and transcription. The day, month, and year are used as the classes for each component of the dates. Moreover, Components-Real and Components-Synth datasets consist of the components of the day, month, and year and their transcriptions.
# Citation
Dataset published originally in `A Generalized Framework for Recognition of Expiration Date on Product Packages Using Fully Convolutional Networks`
@article{seker2022generalized,
title={A generalized framework for recognition of expiration dates on product packages using fully convolutional networks},
author={Seker, Ahmet Cagatay and Ahn, Sang Chul},
journal={Expert Systems with Applications},
pages={117310},
year={2022},
publisher={Elsevier}
} |