File size: 16,722 Bytes
a64db7a 7d738c4 a64db7a 7d738c4 a64db7a 7d738c4 a64db7a 7d738c4 a64db7a aeefba8 a64db7a 7d738c4 a64db7a 7d738c4 a64db7a aeefba8 a64db7a 7d738c4 a64db7a ececc1a a64db7a 7d738c4 a64db7a e684335 a64db7a 7d738c4 eefe20b a64db7a ececc1a a64db7a ececc1a a64db7a ececc1a a64db7a ececc1a a64db7a ececc1a a64db7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# Copyright 2022 for msynth dataset
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Custom dataset-builder for msynth dataset
'''
import os
import datasets
import glob
import re
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{sizikova2023knowledge,
title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
author={Sizikova, Elena and Saharkhiz, Niloufar and Sharma, Diksha and Lago, Miguel and Sahiner, Berkman and Delfino, Jana G. and Badano, Aldo},
journal={Advances in Neural Information Processing Systems},
volume={},
pages={16764--16778},
year={2023}
"""
_DESCRIPTION = """\
M-SYNTH is a synthetic digital mammography (DM) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit.
Curated by: Elena Sizikova, Niloufar Saharkhiz, Diksha Sharma, Miguel Lago, Berkman Sahiner, Jana Gut Delfino, Aldo Badano
License: Creative Commons 1.0 Universal License (CC0)
"""
_HOMEPAGE = "link to the dataset description page (FDA/CDRH/OSEL/DIDSR/VICTRE_project)"
_REPO = "https://huggingface.co/datasets/didsr/msynth/resolve/main/data"
# satting parameters for the URLS
_LESIONDENSITY = ["1.0","1.06", "1.1"]
_DOSE = ["20%","40%","60%","80%","100%"]
_DENSITY = ["fatty", "dense", "hetero","scattered"]
_SIZE = ["5.0","7.0", "9.0"]
_DETECTOR = 'SIM'
_DOSETABLE = {
"dense": {
"20%": '1.73e09',
"40%": '3.47e09',
"60%": '5.20e09',
"80%": '6.94e09',
"100%": '8.67e09'
},
"hetero": {
"20%": '2.04e09',
"40%": '4.08e09',
"60%": '6.12e09',
"80%": '8.16e09',
"100%": '1.02e10'
},
"scattered": {
"20%": '4.08e09',
"40%": '8.16e09',
"60%": '1.22e10',
"80%": '1.63e10',
"100%": '2.04e10'
},
"fatty": {
"20%": '4.44e09',
"40%": '8.88e09',
"60%": '1.33e10',
"80%": '1.78e10',
"100%": '2.22e10'
}
}
# Links to download readme files
_URLS = {
"meta_data": f"{_REPO}/metadata/bounds.zip",
"read_me": f"{_REPO}/README.md"
}
# Define the labels or classes in your dataset
#_NAMES = ["raw", "mhd", "dicom", "loc"]
DATA_DIR = {"all_data": "SIM", "seg": "SIM", "info": "bounds"}
class msynthConfig(datasets.BuilderConfig):
"""msynth dataset"""
lesion_density = _LESIONDENSITY
dose = _DOSE
density = _DENSITY
size = _SIZE
def __init__(self, name, **kwargs):
super(msynthConfig, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="msynth",
**kwargs,
)
class msynth(datasets.GeneratorBasedBuilder):
"""msynth dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
BUILDER_CONFIGS = [
msynthConfig("device_data"),
msynthConfig("segmentation_mask"),
msynthConfig("metadata"),
]
def _info(self):
if self.config.name == "device_data":
# Define dataset features and keys
features = datasets.Features(
{
"Raw": datasets.Value("string"),
"mhd": datasets.Value("string"),
"loc": datasets.Value("string"),
"dcm": datasets.Value("string"),
"density": datasets.Value("string"),
"mass_radius": datasets.Value("float32")
}
)
#keys = ("image", "metadata")
elif self.config.name == "segmentation_mask":
# Define features and keys
features = datasets.Features(
{
"Raw": datasets.Value("string"),
"mhd": datasets.Value("string"),
"loc": datasets.Value("string"),
"density": datasets.Value("string"),
"mass_radius": datasets.Value("float32")
}
)
elif self.config.name == "metadata":
# Define features and keys
features = datasets.Features(
{
"fatty": datasets.Value("string"),
"dense": datasets.Value("string"),
"hetero": datasets.Value("string"),
"scattered": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.utils.download_manager.DownloadManager):
# Setting up the **config_kwargs parameters
if self.config.lesion_density == "all":
self.config.lesion_density = _LESIONDENSITY
if self.config.dose == "all":
self.config.dose = _DOSE
if self.config.density == "all":
self.config.density = _DENSITY
if self.config.size == "all":
self.config.size = _SIZE
if self.config.name == "device_data":
file_name = []
for ld in self.config.lesion_density:
for ds in self.config.dose:
for den in self.config.density:
value = _DOSETABLE[den][ds]
for sz in self.config.size:
temp_name = []
temp_name = (
"device_data_VICTREPhantoms_spic_"
+ ld
+ "/"
+ value
+ "/"
+ den
+ "/2/"
+ sz
+ "/"
+ _DETECTOR
+ ".zip"
)
file_name.append(_REPO +"/"+ temp_name)
# Downloading the data files
# data_dir = dl_manager.download_and_extract(file_name)
data_dir = []
for url in file_name:
try:
temp_down_file = []
# Attempt to download the file
temp_down_file = dl_manager.download_and_extract(url)
data_dir.append(temp_down_file)
except Exception as e:
# If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
logger.error(f"Failed to download {url}: {e}")
return [
datasets.SplitGenerator(
name="device_data",
gen_kwargs={
"files": [data_dir_t for data_dir_t in data_dir],
"name": "all_data",
},
),
]
elif self.config.name == "segmentation_mask":
seg_file_name = []
for den in self.config.density:
for sz in self.config.size:
temp_name = []
temp_name = (
"segmentation_masks"
+ "/"
+ den
+ "/2/"
+ sz
+ "/"
+ _DETECTOR
+ ".zip"
)
seg_file_name.append(_REPO+ "/" + temp_name)
# Downloading the files
seg_dir = []
#seg_dir = dl_manager.download_and_extract(seg_file_name)
for url in seg_file_name:
try:
# Attempt to download the file
temp_down_file = []
temp_down_file = dl_manager.download_and_extract(url)
seg_dir.append(temp_down_file)
except Exception as e:
# If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
logger.error(f"Failed to download {url}: {e}")
return [
datasets.SplitGenerator(
name="segmentation_mask",
gen_kwargs={
"files": [data_dir_t for data_dir_t in seg_dir],
"name": "seg",
},
),
]
elif self.config.name == "metadata":
meta_dir = dl_manager.download_and_extract(_URLS['meta_data'])
return [
datasets.SplitGenerator(
name="metadata",
gen_kwargs={
"files": meta_dir,
"name": "info",
},
),
]
def get_all_file_paths(self, root_directory):
file_paths = [] # List to store file paths
# Walk through the directory and its subdirectories using os.walk
for folder, _, files in os.walk(root_directory):
for file in files:
if file.endswith('.raw'):
# Get the full path of the file
file_path = os.path.join(folder, file)
file_paths.append(file_path)
return file_paths
def get_support_file_path(self, raw_file_path, ext):
folder_path = os.path.dirname(raw_file_path)
# Use os.path.basename() to extract the filename
raw_file_name = os.path.basename(raw_file_path)
# Use os.path.splitext() to split the filename into root and extension
root, extension = os.path.splitext(raw_file_name)
if ext == "dcm":
supp_file_name = f"000.{ext}"
file_path = os.path.join(folder_path,"DICOM_dm",supp_file_name)
else:
supp_file_name = f"{root}.{ext}"
file_path = os.path.join(folder_path, supp_file_name)
if os.path.isfile(file_path):
return file_path
else:
return "Not available for this raw file"
def sort_file_paths(self, file_paths):
digit_numbers = []
for file_path in file_paths:
for word in _DENSITY:
if word in file_path:
if self.config.name == "device-data":
pattern = rf"{word}.(\d+\.)(\d+)"
elif self.config.name == "segmentation-mask":
pattern = rf"{word}.(\d+)"
match = re.search(pattern, file_path)
if self.config.name == "device-data":
digit_numbers.append(int(match.group(2)))
elif self.config.name == "segmentation-mask":
digit_numbers.append(int(match.group(1)))
break
# Sort the list of numbers while keeping track of the original indices
sorted_numbers_with_indices = sorted(enumerate(digit_numbers), key=lambda x: x[1])
# Extract the sorted numbers and their original indices
sorted_indices, sorted_numbers = zip(*sorted_numbers_with_indices)
# Sort the file paths
sorted_file_paths = [file_paths[i] for i in sorted_indices]
return sorted_file_paths
def _generate_examples(self, files, name):
if self.config.name == "device_data":
key = 0
data_dir = []
for folder in files:
tmp_dir = []
tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
data_dir = data_dir + tmp_dir
for path in data_dir:
res_dic = {}
for word in _DENSITY:
if word in path:
breast_density = word
pattern = rf"(\d+\.\d+)_{word}"
match = re.search(pattern, path)
matched_text = match.group(1)
break
# Get image id to filter the respective row of the csv
image_id = os.path.basename(path)
# Use os.path.splitext() to split the filename into root and extension
root, extension = os.path.splitext(image_id)
# Get the extension without the dot
image_labels = extension.lstrip(".")
res_dic["Raw"] = path
res_dic["mhd"] = self.get_support_file_path(path, "mhd")
res_dic["loc"] = self.get_support_file_path(path, "loc")
res_dic["dcm"] = self.get_support_file_path(path, "dcm")
res_dic["density"] = breast_density
res_dic["mass_radius"] = matched_text
yield key, res_dic
key += 1
if self.config.name == "segmentation_mask":
key = 0
data_dir = []
examples = []
for folder in files:
tmp_dir = []
tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
data_dir = data_dir + tmp_dir
data_dir = self.sort_file_paths(data_dir)
new_data_dir = [];
count = 1;
loc = 0;
while loc < len(data_dir):
if count % 2 == 1:
new_data_dir.append(data_dir[loc])
loc += 1
else:
new_data_dir.append('None')
count += 1
for path in new_data_dir:
res_dic = {}
if path == "None":
res_dic["Raw"] = "None"
res_dic["mhd"] = "None"
res_dic["loc"] = "None"
res_dic["density"] = "None"
res_dic["mass_radius"] = "None"
else:
for word in _DENSITY:
if word in path:
breast_density = word
pattern = rf"(\d+\.\d+)_{word}"
match = re.search(pattern, path)
matched_text = match.group(1)
break
# Get image id to filter the respective row of the csv
image_id = os.path.basename(path)
# Use os.path.splitext() to split the filename into root and extension
root, extension = os.path.splitext(image_id)
# Get the extension without the dot
image_labels = extension.lstrip(".")
res_dic["Raw"] = path
res_dic["mhd"] = self.get_support_file_path(path, "mhd")
res_dic["loc"] = self.get_support_file_path(path, "loc")
res_dic["density"] = breast_density
res_dic["mass_radius"] = matched_text
examples.append(res_dic)
for example in examples:
yield key, {**example}
key += 1
examples = []
if self.config.name == "metadata":
key = 0
examples = list()
meta_dir = os.path.join(files, DATA_DIR[name])
res_dic = {
"fatty": os.path.join(meta_dir,'bounds_fatty.npy'),
"dense": os.path.join(meta_dir,'bounds_dense.npy'),
"hetero": os.path.join(meta_dir,'bounds_hetero.npy'),
"scattered": os.path.join(meta_dir,'bounds_scattered.npy')
}
yield key, res_dic
key +=1 |