Datasets:

ArXiv:
DOI:
License:
File size: 17,090 Bytes
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d738c4
 
a64db7a
 
 
 
7d738c4
a64db7a
 
 
 
 
 
 
 
 
 
 
 
7d738c4
a64db7a
 
 
 
 
 
 
6efaab1
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d738c4
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeefba8
78437ee
a64db7a
 
 
7d738c4
a64db7a
 
 
 
 
 
 
7d738c4
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeefba8
afb60ee
a64db7a
 
 
7d738c4
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ececc1a
 
 
 
 
738b7ad
ececc1a
738b7ad
ececc1a
 
738b7ad
ececc1a
738b7ad
ececc1a
0bf62a7
ececc1a
 
 
 
 
 
 
 
 
 
 
 
a64db7a
 
7d738c4
a64db7a
 
 
 
 
1ee557e
a64db7a
422bc15
1ee557e
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e684335
a64db7a
 
 
 
 
 
 
7d738c4
eefe20b
a64db7a
ececc1a
a64db7a
 
 
1ee557e
a64db7a
 
1ee557e
a64db7a
ececc1a
 
 
 
 
 
 
 
f805278
ececc1a
f805278
 
ececc1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64db7a
ececc1a
a64db7a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright 2022 for msynth dataset
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Custom dataset-builder for msynth dataset
'''

import os
import datasets
import glob
import re

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@article{sizikova2023knowledge,
  title={Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses},
  author={Sizikova, Elena and Saharkhiz, Niloufar and Sharma, Diksha and Lago, Miguel and Sahiner, Berkman and Delfino, Jana G. and Badano, Aldo},
  journal={Advances in Neural Information Processing Systems},
  volume={},
  pages={16764--16778},
  year={2023}
"""


_DESCRIPTION = """\
M-SYNTH is a synthetic digital mammography (DM) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit.
Curated by: Elena Sizikova, Niloufar Saharkhiz, Diksha Sharma, Miguel Lago, Berkman Sahiner, Jana Gut Delfino, Aldo Badano
License: Creative Commons 1.0 Universal License (CC0)
"""


_HOMEPAGE = "link to the dataset description page (FDA/CDRH/OSEL/DIDSR/VICTRE_project)"

_REPO = "https://huggingface.co/datasets/didsr/msynth/resolve/main/data"

# satting parameters for the URLS
_LESIONDENSITY = ["1.0","1.06", "1.1"]
_DOSE = ["20%","40%","60%","80%","100%"]
_DENSITY = ["fatty", "dense", "hetero","scattered"]
_SIZE = ["5.0","7.0", "9.0"]
_DETECTOR = 'SIM'

_DOSETABLE = {
    "dense": {
        "20%": '1.73e09',
        "40%": '3.47e09',
        "60%": '5.20e09',
        "80%": '6.94e09',
        "100%": '8.67e09'
    },
    "hetero": {
        "20%": '2.04e09',
        "40%": '4.08e09',
        "60%": '6.12e09',
        "80%": '8.16e09',
        "100%": '1.02e10'
    },
    "scattered": {
        "20%": '4.08e09',
        "40%": '8.16e09',
        "60%": '1.22e10',
        "80%": '1.63e10',
        "100%": '2.04e10'
    },
    "fatty": {
        "20%": '4.44e09',
        "40%": '8.88e09',
        "60%": '1.33e10',
        "80%": '1.78e10',
        "100%": '2.22e10'
    }
}
# Links to download readme files
_URLS = {
    "meta_data": f"{_REPO}/metadata/bounds.zip",
    "read_me": f"{_REPO}/README.md"
}



# Define the labels or classes in your dataset
#_NAMES = ["raw", "mhd", "dicom", "loc"]  

DATA_DIR = {"all_data": "SIM", "seg": "SIM", "info": "bounds"}

class msynthConfig(datasets.BuilderConfig):
    """msynth dataset"""
    lesion_density = _LESIONDENSITY
    dose = _DOSE
    density = _DENSITY
    size = _SIZE
    def __init__(self, name, **kwargs):
        super(msynthConfig, self).__init__(
        version=datasets.Version("1.0.0"),
        name=name,
        description="msynth",
        **kwargs,
        )

class msynth(datasets.GeneratorBasedBuilder):
    """msynth dataset."""
    
    DEFAULT_WRITER_BATCH_SIZE = 256
    BUILDER_CONFIGS = [
        msynthConfig("device_data"),
        msynthConfig("segmentation_mask"),
        msynthConfig("metadata"),
    ]
    
    def _info(self):
        if self.config.name == "device_data":
            # Define dataset features and keys
            features = datasets.Features(
                {       
                    "Raw": datasets.Value("string"),
                    "mhd": datasets.Value("string"),
                    "loc": datasets.Value("string"),
                    "dcm": datasets.Value("string"),                  
                    "density": datasets.Value("string"),
                    "mass_radius": datasets.Value("float32")
                }
            )
        #keys = ("image", "metadata")
        elif self.config.name == "segmentation_mask":
            # Define features and keys
            features = datasets.Features(
                {       
                    "Raw": datasets.Value("string"),
                    "mhd": datasets.Value("string"),
                    "loc": datasets.Value("string"),                 
                    "density": datasets.Value("string"),
                    "mass_radius": datasets.Value("string")
                }
            )
            
        elif self.config.name == "metadata":
            # Define features and keys
            features = datasets.Features(
                {       
                    "fatty": datasets.Value("string"),
                    "dense": datasets.Value("string"),
                    "hetero": datasets.Value("string"),                 
                    "scattered": datasets.Value("string")
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )
    
    def _split_generators(
        self, dl_manager: datasets.utils.download_manager.DownloadManager):
        # Setting up the **config_kwargs parameters
        if self.config.lesion_density == "all":
            self.config.lesion_density = _LESIONDENSITY
            
        if self.config.dose == "all":
            self.config.dose = _DOSE
        
        if self.config.density == "all":
            self.config.density = _DENSITY
   
        if self.config.size == "all":
            self.config.size = _SIZE
        
        
        if self.config.name == "device_data":
            file_name = []
            for ld in self.config.lesion_density:
                for ds in self.config.dose:
                    for den in self.config.density:
                        value = _DOSETABLE[den][ds]
                        for sz in self.config.size:
                            temp_name = []
                            temp_name = (
                                "device_data_VICTREPhantoms_spic_"
                                + ld
                                + "/"
                                + value
                                + "/"
                                + den
                                + "/2/"
                                + sz
                                + "/"
                                + _DETECTOR
                                + ".zip"
                            )
                            file_name.append(_REPO +"/"+ temp_name)
            
            # Downloading the data files
            # data_dir = dl_manager.download_and_extract(file_name)
            data_dir = []
            for url in file_name:
                try:
                    temp_down_file = []
                    # Attempt to download the file
                    temp_down_file = dl_manager.download_and_extract(url)
                    data_dir.append(temp_down_file)
                
                except Exception as e:
                    # If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
                    logger.error(f"Failed to download {url}: {e} because it is not present. Moving on to the next available file")     

            return [
                datasets.SplitGenerator(
                    name="device_data",
                    gen_kwargs={
                        "files": [data_dir_t for data_dir_t in data_dir],
                        "name": "all_data",
                    },
                ),
            ]
        
        elif self.config.name == "segmentation_mask":
            seg_file_name = []
            for den in self.config.density:
                for sz in self.config.size:
                    temp_name = []
                    temp_name = (
                        "segmentation_masks"
                        + "/"
                        + den
                        + "/2/"
                        + sz
                        + "/"
                        + _DETECTOR
                        + ".zip"
                    )
                    seg_file_name.append(_REPO+ "/" + temp_name)

            # Downloading the files
            seg_dir = []
            #seg_dir = dl_manager.download_and_extract(seg_file_name)
            
            for url in seg_file_name:
                try:
                    # Attempt to download the file
                    temp_down_file = []
                    temp_down_file = dl_manager.download_and_extract(url)
                    seg_dir.append(temp_down_file)
                
                except Exception as e:
                    # If an exception occurs (e.g., file not found), log the error and add the URL to the failed_urls list
                    logger.error(f"Failed to download {url}: {e} because it is not present. Moving on to the next available file")    
            
            return [
                datasets.SplitGenerator(
                    name="segmentation_mask",
                    gen_kwargs={
                        "files": [data_dir_t for data_dir_t in seg_dir],
                        "name": "seg",
                    },
                ),
            ]
        
        elif self.config.name == "metadata":
            meta_dir = dl_manager.download_and_extract(_URLS['meta_data'])
            return [
                datasets.SplitGenerator(
                    name="metadata",
                    gen_kwargs={
                        "files": meta_dir,
                        "name": "info",
                    },
                ),
            ]


    def get_all_file_paths(self, root_directory):
        file_paths = []  # List to store file paths

        # Walk through the directory and its subdirectories using os.walk
        for folder, _, files in os.walk(root_directory):
            for file in files:
                if file.endswith('.raw'):
                # Get the full path of the file
                    file_path = os.path.join(folder, file)
                    file_paths.append(file_path)
        return file_paths
    
    def get_support_file_path(self, raw_file_path, ext):        
        folder_path = os.path.dirname(raw_file_path)
        # Use os.path.basename() to extract the filename
        raw_file_name = os.path.basename(raw_file_path)
        # Use os.path.splitext() to split the filename into root and extension
        root, extension = os.path.splitext(raw_file_name)
        if ext == "dcm":
            supp_file_name = f"000.{ext}"
            file_path = os.path.join(folder_path,"DICOM_dm",supp_file_name)
        else:
            supp_file_name = f"{root}.{ext}"
            file_path = os.path.join(folder_path, supp_file_name)

        if os.path.isfile(file_path):
            return file_path
        else:
            return "Not available for this raw file"

    def sort_file_paths(self, file_paths):
        digit_numbers = []
        for file_path in file_paths:
            for word in _DENSITY:
                if word in file_path:
                    if self.config.name == "device_data":
                        pattern = rf"{word}.(\d+\.)(\d+)"
                    elif self.config.name == "segmentation_mask":
                        pattern = rf"{word}.(\d+)"
                    match = re.search(pattern, file_path)
                    if self.config.name == "device_data":
                        digit_numbers.append(int(match.group(2)))
                    elif self.config.name == "segmentation_mask":
                        digit_numbers.append(int(match.group(1)))
                    break
                    
        
        # Sort the list of numbers while keeping track of the original indices
        sorted_numbers_with_indices = sorted(enumerate(digit_numbers), key=lambda x: x[1])
    
        # Extract the sorted numbers and their original indices
        sorted_indices, sorted_numbers = zip(*sorted_numbers_with_indices)
       
        # Sort the file paths
        sorted_file_paths = [file_paths[i] for i in sorted_indices]
        
        return sorted_file_paths

    def _generate_examples(self, files, name):
        if self.config.name == "device_data":
            key = 0
            data_dir = []
            for folder in files:
                tmp_dir = []
                tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
                tmp_dir = self.sort_file_paths(tmp_dir)
                data_dir = data_dir + tmp_dir
                
            #data_dir = self.sort_file_paths(data_dir)
            for path in data_dir:
                res_dic = {}
                for word in _DENSITY:
                    if word in path:
                        breast_density = word
                        pattern = rf"(\d+\.\d+)_{word}"
                        match = re.search(pattern, path)
                        matched_text = match.group(1)
                        break

                # Get image id to filter the respective row of the csv
                image_id = os.path.basename(path)
                # Use os.path.splitext() to split the filename into root and extension
                root, extension = os.path.splitext(image_id)
                # Get the extension without the dot
                image_labels = extension.lstrip(".")
                res_dic["Raw"] = path
                res_dic["mhd"] = self.get_support_file_path(path, "mhd")
                res_dic["loc"] = self.get_support_file_path(path, "loc")
                res_dic["dcm"] = self.get_support_file_path(path, "dcm")
                res_dic["density"] = breast_density
                res_dic["mass_radius"] = matched_text

                yield key, res_dic
                key += 1


        if self.config.name == "segmentation_mask":
            key = 0
            data_dir = []
            examples = []
            for folder in files:
                tmp_dir = []
                tmp_dir = self.get_all_file_paths(os.path.join(folder, DATA_DIR[name]))
                tmp_dir = self.sort_file_paths(tmp_dir)
                data_dir = data_dir + tmp_dir

            #data_dir = self.sort_file_paths(data_dir)

            new_data_dir = [];
            count = 1;
            loc = 0;
            while loc < len(data_dir):
                if count % 2 == 1:
                    new_data_dir.append(data_dir[loc])
                    loc += 1 
                else:
                    new_data_dir.append("None")
                count += 1
            new_data_dir.append("None")
            
            for path in new_data_dir:
                res_dic = {}
                if path == "None":
                    res_dic["Raw"] = "None"
                    res_dic["mhd"] = "None"
                    res_dic["loc"] = "None"
                    res_dic["density"] = "None"
                    res_dic["mass_radius"] = "None"
                    
                else:
                    for word in _DENSITY:
                        if word in path:
                            breast_density = word
                            pattern = rf"(\d+\.\d+)_{word}"
                            match = re.search(pattern, path)
                            matched_text = match.group(1)
                            break            
                    # Get image id to filter the respective row of the csv
                    image_id = os.path.basename(path)
                    # Use os.path.splitext() to split the filename into root and extension
                    root, extension = os.path.splitext(image_id)
                    # Get the extension without the dot
                    image_labels = extension.lstrip(".")
                    res_dic["Raw"] = path
                    res_dic["mhd"] = self.get_support_file_path(path, "mhd")
                    res_dic["loc"] = self.get_support_file_path(path, "loc")
                    res_dic["density"] = breast_density
                    res_dic["mass_radius"] = matched_text

                examples.append(res_dic)

            for example in examples:
                yield key, {**example}
                key += 1
            examples = []
            
        if self.config.name == "metadata":
            key = 0
            examples = list()
            meta_dir = os.path.join(files, DATA_DIR[name]) 

            res_dic = {
                "fatty": os.path.join(meta_dir,'bounds_fatty.npy'),
                "dense": os.path.join(meta_dir,'bounds_dense.npy'),
                "hetero": os.path.join(meta_dir,'bounds_hetero.npy'),                 
                "scattered": os.path.join(meta_dir,'bounds_scattered.npy')
            }
            yield key, res_dic
            key +=1