File size: 5,385 Bytes
42e6f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d57d4a
 
 
42e6f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23bd707
42e6f8b
 
 
 
 
 
23bd707
 
42e6f8b
 
 
6d57d4a
8e52994
 
 
 
 
 
 
 
 
42e6f8b
 
 
6d57d4a
42e6f8b
 
 
6d57d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e6f8b
 
 
 
 
6d57d4a
42e6f8b
 
 
 
6d57d4a
42e6f8b
 
6d57d4a
42e6f8b
 
 
6d57d4a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
annotations_creators: []
language: en
license: bsd
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: bdd100k-validation
tags:
- fiftyone
- image
- image-classification
- object-detection
dataset_summary: '



  ![image/png](dataset_preview.gif)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 10000 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include ''split'', ''max_samples'', etc

  dataset = fouh.load_from_hub("dgural/bdd100k")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for bdd100k-validation


From one of the largest open source driving datasets, [BDD100k](https://www.vis.xyz/bdd100k/), is the BDD100K images dataset.
The dataset consists of every 10th second in the videos and contains a train, validation and test split.
It contains labels for object detection, weather, time of day, and scene of the driving!


![image/png](dataset_preview.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 10000 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'split', 'max_samples', etc
dataset = fouh.load_from_hub("dgural/bdd100k")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description


- **Curated by:** [ETH VIS Group](https://www.vis.xyz/)
- **Language(s) (NLP):** en
- **License:** bsd

### Dataset Sources [optional]


- **Repository:** [bdd100k](https://github.com/bdd100k/bdd100k)
- **Paper :** [BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning](https://arxiv.org/abs/1805.04687)

## Uses

By downoading, you are agreeing to the [BDD100K License](https://doc.bdd100k.com/license.html#license). 
Copyright ©2018. The Regents of the University of California (Regents). All Rights Reserved.

THIS SOFTWARE AND/OR DATA WAS DEPOSITED IN THE BAIR OPEN RESEARCH COMMONS REPOSITORY ON 1/1/2021

Permission to use, copy, modify, and distribute this software and its documentation for educational, research, and not-for-profit purposes, without fee and without a signed licensing agreement; and permission to use, copy, modify and distribute this software for commercial purposes (such rights not subject to transfer) to BDD and BAIR Commons members and their affiliates, is hereby granted, provided that the above copyright notice, this paragraph and the following two paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201, otl@berkeley.edu, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.

IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED “AS IS”. REGENTS HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

### Direct Use

This dataset is great for self driving car applications, especially for dealing with many different weather conditions and different times of day!


## Dataset Structure
```
Name:        bdd100k-validation
Media type:  image
Num samples: 10000
Persistent:  True
Tags:        []
Sample fields:
    id:         fiftyone.core.fields.ObjectIdField
    filepath:   fiftyone.core.fields.StringField
    tags:       fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
    metadata:   fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
    weather:    fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
    timeofday:  fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
    scene:      fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
    detections: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
```
    



### Source Data

The dataset is sourced from [BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning](https://arxiv.org/abs/1805.04687)


#### Who are the source data producers?

BDD100K is now managed by the [ETH VIS Group](https://www.vis.xyz/bdd100k/)


## Citation

**BibTeX:**

@misc{yu2020bdd100k,
      title={BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning}, 
      author={Fisher Yu and Haofeng Chen and Xin Wang and Wenqi Xian and Yingying Chen and Fangchen Liu and Vashisht Madhavan and Trevor Darrell},
      year={2020},
      eprint={1805.04687},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}