File size: 3,041 Bytes
c9a496a
 
 
 
 
 
 
 
 
ccd7bfe
c9a496a
 
ccd7bfe
c9a496a
ccd7bfe
 
b24d869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a496a
b24d869
 
c9a496a
b24d869
 
 
 
 
 
 
 
e5adc1c
b24d869
0ffd947
 
b24d869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a496a
b24d869
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
dataset_info:
  features:
  - name: context
    dtype: string
  - name: questions
    dtype: string
  splits:
  - name: train
    num_bytes: 20771339
    num_examples: 18896
  - name: validation
    num_bytes: 2430525
    num_examples: 2067
  download_size: 12661411
  dataset_size: 23201864
annotations_creators:
  - crowdsourced
language:
  - en
language_creators:
  - crowdsourced
license:
  - cc-by-4.0
multilinguality:
  - monolingual
pretty_name: Question Generation for T5 based on Squad V1.1
size_categories:
  - 10K<n<100K
source_datasets:
  - extended|squad
tags:
  - questiongeneration
  - question-generation
  - text2text-generation
task_categories:
  - text2text-generation
task_ids: []
---


# Dataset Card for "squad-v1.1-t5-question-generation"
## Dataset Description

- **Homepage:** [https://rajpurkar.github.io/SQuAD-explorer/](https://rajpurkar.github.io/SQuAD-explorer/)
- **Paper:** [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250)

### Dataset Summary

This is a modified Stanford Question Answering Dataset (SQuAD) to suit question generation with All Questions in One Line (AQOL) just like in [Transformer-based End-to-End Question Generation](https://arxiv.org/pdf/2005.01107v1.pdf)
specifically for the T5 family of models. The prefix is `generate questions: ` so that the task can be unique to a trained model.

Check out the generation notebook [here](https://nbviewer.org/urls/huggingface.co/datasets/derek-thomas/squad-v1.1-t5-question-generation/resolve/main/Squad_V1_Question_Generation.ipynb).

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

## Dataset Structure

### Data Instances

#### plain_text

An example of 'train' looks as follows.
```
{
    "context": "generate questions: This is a test context.",
    "question": "Is this a test? {sep_token} Is this another Test {sep_token}"
}
```

### Data Fields

The data fields are the same among all splits.

#### plain_text
- `context`: a `string` feature.
- `question`: a `string` feature.

### Data Splits
|   name   |train|validation|
|----------|----:|---------:|
|plain_text|18896|      2067|

### Citation Information

```
@article{2016arXiv160605250R,
       author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
                 Konstantin and {Liang}, Percy},
        title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
      journal = {arXiv e-prints},
         year = 2016,
          eid = {arXiv:1606.05250},
        pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
       eprint = {1606.05250},
}

```

### Contributions

Thanks to [Derek Thomas](https://huggingface.co/derek-thomas) and [Thomas Simonini](https://huggingface.co/ThomasSimonini) for adding this to the hub

Check out: [How to contribute more](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)