Datasets:
File size: 4,655 Bytes
e548574 03fb08e e548574 03fb08e e548574 3e972d4 e548574 5a6e475 e548574 03fb08e 4ed3e4c 03fb08e e548574 33f69b3 e548574 33f69b3 e548574 33f69b3 e548574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
"""
Data loader script for the eur-lex-sum summarization dataset by Aumiller, Chouhan and Gertz.
The script itself was adapted from the XLSum data loader.
"""
import os
import json
import datasets
from datasets.tasks import Summarization
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{aumiller-etal-2022-eur,
author = {Aumiller, Dennis and Chouhan, Ashish and Gertz, Michael},
title = {{EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain}},
journal = {CoRR},
volume = {abs/2210.13448},
eprinttype = {arXiv},
eprint = {2210.13448},
url = {https://arxiv.org/abs/2210.13448}
}
"""
_HOMEPAGE = "https://github.com/achouhan93/eur-lex-sum"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)"
_DESCRIPTION = """\
The EUR-Lex-Sum dataset is a multilingual resource intended for text summarization in the legal domain.
It is based on human-written summaries of legal acts issued by the European Union.
It distinguishes itself by introducing a smaller set of high-quality human-written samples,
each of which have much longer references (and summaries!) than comparable datasets.
Additionally, the underlying legal acts provide a challenging domain-specific application to legal texts,
which are so far underrepresented in non-English languages.
For each legal act, the sample can be available in up to 24 languages
(the officially recognized languages in the European Union);
the validation and test samples consist entirely of samples available in all languages,
and are aligned across all languages at the paragraph level.
"""
_LANGUAGES = [
"bulgarian",
"czech",
"dutch",
"estonian",
"french",
"greek",
"",
"irish",
"latvian",
"maltese",
"portuguese",
"slovak",
"spanish",
"croatian",
"danish",
"english",
"finnish",
"german",
"hungarian",
"italian",
"lithuanian",
"polish",
"romanian",
"slovenian",
"swedish"
]
_URL = "https://huggingface.co/datasets/dennlinger/eur-lex-sum/resolve/main/data/"
_URLS = {
"train": _URL + "{}/train.json",
"validation": _URL + "{}/validation.json",
"test": _URL + "{}/test.json",
}
class EurLexSumConfig(datasets.BuilderConfig):
"""BuilderConfig for EUR-Lex-Sum."""
def __init__(self, **kwargs):
"""BuilderConfig for EUR-Lex-Sum.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(EurLexSumConfig, self).__init__(**kwargs)
class EurLexSum(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=f"{lang}",
version=datasets.Version("1.0.0")
)
for lang in _LANGUAGES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"celex_id": datasets.Value("string"),
"reference": datasets.Value("string"),
"summary": datasets.Value("string")
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=[
Summarization(task="summarization", text_column="reference", summary_column="summary")
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
lang = str(self.config.name)
# Add language tag for each split
urls = {k: url.format(lang) for k, url in _URLS.items()}
print(urls)
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
},
),
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
with open(filepath) as f:
for idx_, row in enumerate(f):
data = json.loads(row)
yield idx_, data |