Datasets:

Languages:
English
ArXiv:
License:
File size: 9,496 Bytes
a82dfbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879df4d
a82dfbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ae8d4
a82dfbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NarrativeQA Reading Comprehension Challenge"""


import csv
import os
from os import listdir
from os.path import isfile, join

import datasets


_CITATION = """\
@article{kovcisky2018narrativeqa,
  title={The narrativeqa reading comprehension challenge},
  author={Ko{\v{c}}isk{\'y}, Tom{\'a}{\v{s}} and Schwarz, Jonathan and Blunsom, Phil and Dyer, Chris and Hermann, Karl Moritz and Melis, G{\'a}bor and Grefenstette, Edward},
  journal={Transactions of the Association for Computational Linguistics},
  volume={6},
  pages={317--328},
  year={2018},
  publisher={MIT Press}
}
"""


_DESCRIPTION = """\
The Narrative QA Manual dataset is a reading comprehension \
dataset, in which the reader must answer questions about stories \
by reading entire books or movie scripts. \
The QA tasks are designed so that successfully answering their questions \
requires understanding the underlying narrative rather than \
relying on shallow pattern matching or salience.\\
THIS DATASET REQUIRES A MANUALLY DOWNLOADED FILE! \
Because of a script in the original repository which downloads the stories from original URLs everytime, \
The links are sometimes broken or invalid.  \
Therefore, you need to manually download the stories for this dataset using the script provided by the authors \
(https://github.com/deepmind/narrativeqa/blob/master/download_stories.sh). Running the shell script creates a folder named "tmp" \
in the root directory and downloads the stories there. This folder containing the stories\
can be used to load the dataset via `datasets.load_dataset("narrativeqa_manual", data_dir="<path/to/folder>")`.                """


_HOMEPAGE = "https://deepmind.com/research/publications/narrativeqa-reading-comprehension-challenge"
_LICENSE = "https://github.com/deepmind/narrativeqa/blob/master/LICENSE"


# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://github.com/deepmind/narrativeqa"
_URLS = {
    "documents": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/documents.csv",
    "summaries": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/third_party/wikipedia/summaries.csv",
    "qaps": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/qaps.csv",
}


class NarrativeqaManual(datasets.GeneratorBasedBuilder):
    """The NarrativeQA Manual dataset"""

    VERSION = datasets.Version("1.0.0")

    @property
    def manual_download_instructions(self):
        return """ You need to manually download the stories for this dataset using the script provided by the authors \
                (https://github.com/deepmind/narrativeqa/blob/master/download_stories.sh). Running the shell script creates a folder named "tmp"\
                in the root directory and downloads the stories there. This folder containing the stories\
                can be used to load the dataset via `datasets.load_dataset("narrativeqa_manual", data_dir="<path/to/folder>")."""

    def _info(self):

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "document": {
                        "id": datasets.Value("string"),
                        "kind": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "file_size": datasets.Value("int32"),
                        "word_count": datasets.Value("int32"),
                        "start": datasets.Value("string"),
                        "end": datasets.Value("string"),
                        "summary": {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                            "url": datasets.Value("string"),
                            "title": datasets.Value("string"),
                        },
                        "text": datasets.Value("string"),
                    },
                    "question": {
                        "text": datasets.Value("string"),
                        "tokens": datasets.features.Sequence(datasets.Value("string")),
                    },
                    "answers": [
                        {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                        }
                    ],
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLS)
        manual_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))

        if not os.path.exists(manual_dir):
            raise FileNotFoundError(
                f"{manual_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('narrativeqa_manual', data_dir=...)` that includes the stories downloaded from the original repository. Manual download instructions: {self.manual_download_instructions}"
            )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": data_dir,
                    "manual_dir": manual_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": data_dir,
                    "manual_dir": manual_dir,
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_dir": data_dir,
                    "manual_dir": manual_dir,
                    "split": "valid",
                },
            ),
        ]

    def _generate_examples(self, data_dir, manual_dir, split):
        """Yields examples."""

        documents = {}
        with open(data_dir["documents"], encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                documents[row["document_id"]] = row

        summaries = {}
        with open(data_dir["summaries"], encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                summaries[row["document_id"]] = row

        onlyfiles = [f for f in listdir(manual_dir) if isfile(join(manual_dir, f))]
        story_texts = {}
        for i in onlyfiles:
            if "content" in i:
                with open(os.path.join(manual_dir, i), "r", encoding="utf-8", errors="ignore") as f:
                    text = f.read()
                    story_texts[i.split(".")[0]] = text

        with open(data_dir["qaps"], encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for id_, row in enumerate(reader):
                if row["set"] != split:
                    continue
                document_id = row["document_id"]
                document = documents[document_id]
                summary = summaries[document_id]
                full_text = story_texts[document_id]
                res = {
                    "document": {
                        "id": document["document_id"],
                        "kind": document["kind"],
                        "url": document["story_url"],
                        "file_size": document["story_file_size"],
                        "word_count": document["story_word_count"],
                        "start": document["story_start"],
                        "end": document["story_end"],
                        "summary": {
                            "text": summary["summary"],
                            "tokens": summary["summary_tokenized"].split(),
                            "url": document["wiki_url"],
                            "title": document["wiki_title"],
                        },
                        "text": full_text,
                    },
                    "question": {"text": row["question"], "tokens": row["question_tokenized"].split()},
                    "answers": [
                        {"text": row["answer1"], "tokens": row["answer1_tokenized"].split()},
                        {"text": row["answer2"], "tokens": row["answer2_tokenized"].split()},
                    ],
                }
                yield id_, res