Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,673 Bytes
4b15773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NarrativeQA Reading Comprehension Challenge"""


import csv
import os

import datasets


_CITATION = """\
@article{narrativeqa,
author = {Tom\\'a\\v s Ko\\v cisk\\'y and Jonathan Schwarz and Phil Blunsom and
          Chris Dyer and Karl Moritz Hermann and G\\'abor Melis and
          Edward Grefenstette},
title = {The {NarrativeQA} Reading Comprehension Challenge},
journal = {Transactions of the Association for Computational Linguistics},
url = {https://TBD},
volume = {TBD},
year = {2018},
pages = {TBD},
}
"""

_DESCRIPTION = """\
The NarrativeQA dataset for question answering on long documents (movie scripts, books). It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
"""

_URLS = {
    "full_text": "https://storage.googleapis.com/huggingface-nlp/datasets/narrative_qa/narrativeqa_full_text.zip",
    "repo": "https://github.com/deepmind/narrativeqa/archive/master.zip",
}


class NarrativeQa(datasets.GeneratorBasedBuilder):
    """NarrativeQA: Question answering on long-documents"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            features=datasets.Features(
                {
                    "document": {
                        "id": datasets.Value("string"),
                        "kind": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "file_size": datasets.Value("int32"),
                        "word_count": datasets.Value("int32"),
                        "start": datasets.Value("string"),
                        "end": datasets.Value("string"),
                        "summary": {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                            "url": datasets.Value("string"),
                            "title": datasets.Value("string"),
                        },
                        "text": datasets.Value("string"),
                    },
                    "question": {
                        "text": datasets.Value("string"),
                        "tokens": datasets.features.Sequence(datasets.Value("string")),
                    },
                    "answers": [
                        {
                            "text": datasets.Value("string"),
                            "tokens": datasets.features.Sequence(datasets.Value("string")),
                        }
                    ],
                }
            ),
            homepage="https://github.com/deepmind/narrativeqa",
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        dl_dir = dl_manager.download_and_extract(_URLS)
        dl_dir["repo"] = os.path.join(dl_dir["repo"], "narrativeqa-master")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "valid"},
            ),
        ]

    def _generate_examples(self, repo_dir, full_text_dir, split):
        """Yields examples."""
        documents = {}
        with open(os.path.join(repo_dir, "documents.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                documents[row["document_id"]] = row

        summaries = {}
        with open(os.path.join(repo_dir, "third_party", "wikipedia", "summaries.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if row["set"] != split:
                    continue
                summaries[row["document_id"]] = row

        with open(os.path.join(repo_dir, "qaps.csv"), encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for id_, row in enumerate(reader):
                if row["set"] != split:
                    continue
                document_id = row["document_id"]
                document = documents[document_id]
                summary = summaries[document_id]
                full_text = open(os.path.join(full_text_dir, document_id + ".content"), encoding="latin-1").read()
                res = {
                    "document": {
                        "id": document["document_id"],
                        "kind": document["kind"],
                        "url": document["story_url"],
                        "file_size": document["story_file_size"],
                        "word_count": document["story_word_count"],
                        "start": document["story_start"],
                        "end": document["story_end"],
                        "summary": {
                            "text": summary["summary"],
                            "tokens": summary["summary_tokenized"].split(),
                            "url": document["wiki_url"],
                            "title": document["wiki_title"],
                        },
                        "text": full_text,
                    },
                    "question": {"text": row["question"], "tokens": row["question_tokenized"].split()},
                    "answers": [
                        {"text": row["answer1"], "tokens": row["answer1_tokenized"].split()},
                        {"text": row["answer2"], "tokens": row["answer2_tokenized"].split()},
                    ],
                }
                yield id_, res