Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
abstractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 6,673 Bytes
4b15773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NarrativeQA Reading Comprehension Challenge"""
import csv
import os
import datasets
_CITATION = """\
@article{narrativeqa,
author = {Tom\\'a\\v s Ko\\v cisk\\'y and Jonathan Schwarz and Phil Blunsom and
Chris Dyer and Karl Moritz Hermann and G\\'abor Melis and
Edward Grefenstette},
title = {The {NarrativeQA} Reading Comprehension Challenge},
journal = {Transactions of the Association for Computational Linguistics},
url = {https://TBD},
volume = {TBD},
year = {2018},
pages = {TBD},
}
"""
_DESCRIPTION = """\
The NarrativeQA dataset for question answering on long documents (movie scripts, books). It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
"""
_URLS = {
"full_text": "https://storage.googleapis.com/huggingface-nlp/datasets/narrative_qa/narrativeqa_full_text.zip",
"repo": "https://github.com/deepmind/narrativeqa/archive/master.zip",
}
class NarrativeQa(datasets.GeneratorBasedBuilder):
"""NarrativeQA: Question answering on long-documents"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
features=datasets.Features(
{
"document": {
"id": datasets.Value("string"),
"kind": datasets.Value("string"),
"url": datasets.Value("string"),
"file_size": datasets.Value("int32"),
"word_count": datasets.Value("int32"),
"start": datasets.Value("string"),
"end": datasets.Value("string"),
"summary": {
"text": datasets.Value("string"),
"tokens": datasets.features.Sequence(datasets.Value("string")),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
},
"text": datasets.Value("string"),
},
"question": {
"text": datasets.Value("string"),
"tokens": datasets.features.Sequence(datasets.Value("string")),
},
"answers": [
{
"text": datasets.Value("string"),
"tokens": datasets.features.Sequence(datasets.Value("string")),
}
],
}
),
homepage="https://github.com/deepmind/narrativeqa",
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLS)
dl_dir["repo"] = os.path.join(dl_dir["repo"], "narrativeqa-master")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"repo_dir": dl_dir["repo"], "full_text_dir": dl_dir["full_text"], "split": "valid"},
),
]
def _generate_examples(self, repo_dir, full_text_dir, split):
"""Yields examples."""
documents = {}
with open(os.path.join(repo_dir, "documents.csv"), encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
if row["set"] != split:
continue
documents[row["document_id"]] = row
summaries = {}
with open(os.path.join(repo_dir, "third_party", "wikipedia", "summaries.csv"), encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
if row["set"] != split:
continue
summaries[row["document_id"]] = row
with open(os.path.join(repo_dir, "qaps.csv"), encoding="utf-8") as f:
reader = csv.DictReader(f)
for id_, row in enumerate(reader):
if row["set"] != split:
continue
document_id = row["document_id"]
document = documents[document_id]
summary = summaries[document_id]
full_text = open(os.path.join(full_text_dir, document_id + ".content"), encoding="latin-1").read()
res = {
"document": {
"id": document["document_id"],
"kind": document["kind"],
"url": document["story_url"],
"file_size": document["story_file_size"],
"word_count": document["story_word_count"],
"start": document["story_start"],
"end": document["story_end"],
"summary": {
"text": summary["summary"],
"tokens": summary["summary_tokenized"].split(),
"url": document["wiki_url"],
"title": document["wiki_title"],
},
"text": full_text,
},
"question": {"text": row["question"], "tokens": row["question_tokenized"].split()},
"answers": [
{"text": row["answer1"], "tokens": row["answer1_tokenized"].split()},
{"text": row["answer2"], "tokens": row["answer2_tokenized"].split()},
],
}
yield id_, res
|