Datasets:
ddrg
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 1,153 Bytes
02e7469
 
 
 
 
 
 
 
 
7ace16a
02e7469
 
7ace16a
02e7469
7ace16a
 
02e7469
 
 
38c6a3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
---
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 225647910.0
    num_examples: 2886810
  - name: test
    num_bytes: 23848817.0
    num_examples: 311298
  download_size: 131750232
  dataset_size: 249496727.0
---
# Dataset Card for "math_formulas"

Mathematical dataset containing formulas based on the [AMPS](https://drive.google.com/file/d/1hQsua3TkpEmcJD_UWQx8dmNdEZPyxw23) Khan dataset and the [ARQMath](https://drive.google.com/drive/folders/1YekTVvfmYKZ8I5uiUMbs21G2mKwF9IAm) dataset V1.3. Based on the retrieved LaTeX formulas, more equivalent versions have been generated by applying randomized LaTeX printing with this [SymPy fork](https://drive.google.com/drive/folders/1YekTVvfmYKZ8I5uiUMbs21G2mKwF9IAm). The formulas are intended to be well applicable for MLM. For instance, a masking for a formula like `(a+b)^2 = a^2 + 2ab + b^2` makes sense (e.g., `(a+[MASK])^2 = a^2 + [MASK]ab + b[MASK]2` -> masked tokens are deducable by the context), in contrast, formulas such as `f(x) = 3x+1` are not (e.g., `[MASK](x) = 3x[MASK]1` -> [MASK] tokens are ambigious).