File size: 8,778 Bytes
ee28498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from __future__ import print_function
import os
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
import cv2
from models.retinaface import RetinaFace
from utils.box_utils import decode, decode_landm
from utils.timer import Timer
parser = argparse.ArgumentParser(description='Retinaface')
parser.add_argument('-m', '--trained_model', default='./weights/mobilenet0.25_Final.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--save_folder', default='eval/', type=str, help='Dir to save results')
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference')
parser.add_argument('--dataset', default='FDDB', type=str, choices=['FDDB'], help='dataset')
parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
parser.add_argument('-s', '--save_image', action="store_true", default=False, help='show detection results')
parser.add_argument('--vis_thres', default=0.5, type=float, help='visualization_threshold')
args = parser.parse_args()
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
else:
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
if __name__ == '__main__':
torch.set_grad_enabled(False)
cfg = None
if args.network == "mobile0.25":
cfg = cfg_mnet
elif args.network == "resnet50":
cfg = cfg_re50
# net and model
net = RetinaFace(cfg=cfg, phase = 'test')
net = load_model(net, args.trained_model, args.cpu)
net.eval()
print('Finished loading model!')
print(net)
cudnn.benchmark = True
device = torch.device("cpu" if args.cpu else "cuda")
net = net.to(device)
# save file
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
fw = open(os.path.join(args.save_folder, args.dataset + '_dets.txt'), 'w')
# testing dataset
testset_folder = os.path.join('data', args.dataset, 'images/')
testset_list = os.path.join('data', args.dataset, 'img_list.txt')
with open(testset_list, 'r') as fr:
test_dataset = fr.read().split()
num_images = len(test_dataset)
# testing scale
resize = 1
_t = {'forward_pass': Timer(), 'misc': Timer()}
# testing begin
for i, img_name in enumerate(test_dataset):
image_path = testset_folder + img_name + '.jpg'
img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
img = np.float32(img_raw)
if resize != 1:
img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
_t['forward_pass'].tic()
loc, conf, landms = net(img) # forward pass
_t['forward_pass'].toc()
_t['misc'].tic()
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2]])
scale1 = scale1.to(device)
landms = landms * scale1 / resize
landms = landms.cpu().numpy()
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# keep top-K before NMS
# order = scores.argsort()[::-1][:args.top_k]
order = scores.argsort()[::-1]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
dets = dets[keep, :]
landms = landms[keep]
# keep top-K faster NMS
# dets = dets[:args.keep_top_k, :]
# landms = landms[:args.keep_top_k, :]
dets = np.concatenate((dets, landms), axis=1)
_t['misc'].toc()
# save dets
if args.dataset == "FDDB":
fw.write('{:s}\n'.format(img_name))
fw.write('{:.1f}\n'.format(dets.shape[0]))
for k in range(dets.shape[0]):
xmin = dets[k, 0]
ymin = dets[k, 1]
xmax = dets[k, 2]
ymax = dets[k, 3]
score = dets[k, 4]
w = xmax - xmin + 1
h = ymax - ymin + 1
# fw.write('{:.3f} {:.3f} {:.3f} {:.3f} {:.10f}\n'.format(xmin, ymin, w, h, score))
fw.write('{:d} {:d} {:d} {:d} {:.10f}\n'.format(int(xmin), int(ymin), int(w), int(h), score))
print('im_detect: {:d}/{:d} forward_pass_time: {:.4f}s misc: {:.4f}s'.format(i + 1, num_images, _t['forward_pass'].average_time, _t['misc'].average_time))
# show image
if args.save_image:
for b in dets:
if b[4] < args.vis_thres:
continue
text = "{:.4f}".format(b[4])
b = list(map(int, b))
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
cv2.putText(img_raw, text, (cx, cy),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
# landms
cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4)
cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4)
cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4)
cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4)
cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4)
# save image
if not os.path.exists("./results/"):
os.makedirs("./results/")
name = "./results/" + str(i) + ".jpg"
cv2.imwrite(name, img_raw)
fw.close()
|