File size: 13,589 Bytes
abb3944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b941b
abb3944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b941b
abb3944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import numpy as np


def point_form(boxes):
    """ Convert prior_boxes to (xmin, ymin, xmax, ymax)

    representation for comparison to point form ground truth data.

    Args:

        boxes: (tensor) center-size default boxes from priorbox layers.

    Return:

        boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.

    """
    return torch.cat((boxes[:, :2] - boxes[:, 2:]/2,     # xmin, ymin
                     boxes[:, :2] + boxes[:, 2:]/2), 1)  # xmax, ymax


def center_size(boxes):
    """ Convert prior_boxes to (cx, cy, w, h)

    representation for comparison to center-size form ground truth data.

    Args:

        boxes: (tensor) point_form boxes

    Return:

        boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.

    """
    return torch.cat((boxes[:, 2:] + boxes[:, :2])/2,  # cx, cy
                     boxes[:, 2:] - boxes[:, :2], 1)  # w, h


def intersect(box_a, box_b):
    """ We resize both tensors to [A,B,2] without new malloc:

    [A,2] -> [A,1,2] -> [A,B,2]

    [B,2] -> [1,B,2] -> [A,B,2]

    Then we compute the area of intersect between box_a and box_b.

    Args:

      box_a: (tensor) bounding boxes, Shape: [A,4].

      box_b: (tensor) bounding boxes, Shape: [B,4].

    Return:

      (tensor) intersection area, Shape: [A,B].

    """
    A = box_a.size(0)
    B = box_b.size(0)
    max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = torch.clamp((max_xy - min_xy), min=0)
    return inter[:, :, 0] * inter[:, :, 1]


def jaccard(box_a, box_b):
    """Compute the jaccard overlap of two sets of boxes.  The jaccard overlap

    is simply the intersection over union of two boxes.  Here we operate on

    ground truth boxes and default boxes.

    E.g.:

        A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)

    Args:

        box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]

        box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]

    Return:

        jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]

    """
    inter = intersect(box_a, box_b)
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter)  # [A,B]
    area_b = ((box_b[:, 2]-box_b[:, 0]) *
              (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter)  # [A,B]
    union = area_a + area_b - inter
    return inter / union  # [A,B]


def matrix_iou(a, b):
    """

    return iou of a and b, numpy version for data augenmentation

    """
    lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

    area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
    return area_i / (area_a[:, np.newaxis] + area_b - area_i)


def matrix_iof(a, b):
    """

    return iof of a and b, numpy version for data augenmentation

    """
    lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

    area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    return area_i / np.maximum(area_a[:, np.newaxis], 1)


def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
    """Match each prior box with the ground truth box of the highest jaccard

    overlap, encode the bounding boxes, then return the matched indices

    corresponding to both confidence and location preds.

    Args:

        threshold: (float) The overlap threshold used when mathing boxes.

        truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].

        priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].

        variances: (tensor) Variances corresponding to each prior coord,

            Shape: [num_priors, 4].

        labels: (tensor) All the class labels for the image, Shape: [num_obj].

        landms: (tensor) Ground truth landms, Shape [num_obj, 10].

        loc_t: (tensor) Tensor to be filled w/ endcoded location targets.

        conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.

        landm_t: (tensor) Tensor to be filled w/ endcoded landm targets.

        idx: (int) current batch index

    Return:

        The matched indices corresponding to 1)location 2)confidence 3)landm preds.

    """
    # jaccard index
    overlaps = jaccard(
        truths,
        point_form(priors)
    )
    # (Bipartite Matching)
    # [1,num_objects] best prior for each ground truth
    best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)

    # ignore hard gt
    valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
    best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
    if best_prior_idx_filter.shape[0] <= 0:
        loc_t[idx] = 0
        conf_t[idx] = 0
        return

    # [1,num_priors] best ground truth for each prior
    best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
    best_truth_idx.squeeze_(0)
    best_truth_overlap.squeeze_(0)
    best_prior_idx.squeeze_(1)
    best_prior_idx_filter.squeeze_(1)
    best_prior_overlap.squeeze_(1)
    best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2)  # ensure best prior
    # TODO refactor: index  best_prior_idx with long tensor
    # ensure every gt matches with its prior of max overlap
    for j in range(best_prior_idx.size(0)):     # 判别此anchor是预测哪一个boxes
        best_truth_idx[best_prior_idx[j]] = j
    matches = truths[best_truth_idx]            # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
    conf = labels[best_truth_idx]               # Shape: [num_priors]      此处为每一个anchor对应的label取出来
    conf[best_truth_overlap < threshold] = 0    # label as background   overlap<0.35的全部作为负样本
    loc = encode(matches, priors, variances)

    matches_landm = landms[best_truth_idx]
    landm = encode_landm(matches_landm, priors, variances)
    loc_t[idx] = loc    # [num_priors,4] encoded offsets to learn
    conf_t[idx] = conf  # [num_priors] top class label for each prior
    landm_t[idx] = landm


def encode(matched, priors, variances):
    """Encode the variances from the priorbox layers into the ground truth boxes

    we have matched (based on jaccard overlap) with the prior boxes.

    Args:

        matched: (tensor) Coords of ground truth for each prior in point-form

            Shape: [num_priors, 4].

        priors: (tensor) Prior boxes in center-offset form

            Shape: [num_priors,4].

        variances: (list[float]) Variances of priorboxes

    Return:

        encoded boxes (tensor), Shape: [num_priors, 4]

    """

    # dist b/t match center and prior's center
    g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
    # encode variance
    g_cxcy /= (variances[0] * priors[:, 2:])
    # match wh / prior wh
    g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
    g_wh = torch.log(g_wh) / variances[1]
    # return target for smooth_l1_loss
    return torch.cat([g_cxcy, g_wh], 1)  # [num_priors,4]

def encode_landm(matched, priors, variances):
    """Encode the variances from the priorbox layers into the ground truth boxes

    we have matched (based on jaccard overlap) with the prior boxes.

    Args:

        matched: (tensor) Coords of ground truth for each prior in point-form

            Shape: [num_priors, 10].

        priors: (tensor) Prior boxes in center-offset form

            Shape: [num_priors,4].

        variances: (list[float]) Variances of priorboxes

    Return:

        encoded landm (tensor), Shape: [num_priors, 10]

    """

    # dist b/t match center and prior's center
    matched = torch.reshape(matched, (matched.size(0), 5, 2))
    priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
    priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
    priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
    priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
    priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
    g_cxcy = matched[:, :, :2] - priors[:, :, :2]
    # encode variance
    g_cxcy /= (variances[0] * priors[:, :, 2:])
    # g_cxcy /= priors[:, :, 2:]
    g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
    # return target for smooth_l1_loss
    return g_cxcy


# Adapted from https://github.com/Hakuyume/chainer-ssd
def decode(loc, priors, variances):
    """Decode locations from predictions using priors to undo

    the encoding we did for offset regression at test time.

    Args:

        loc (tensor): location predictions for loc layers,

            Shape: [num_priors,4]

        priors (tensor): Prior boxes in center-offset form.

            Shape: [num_priors,4].

        variances: (list[float]) Variances of priorboxes

    Return:

        decoded bounding box predictions

    """

    boxes = torch.cat((
        priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
        priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]
    return boxes

def decode_landm(pre, priors, variances):
    """Decode landm from predictions using priors to undo

    the encoding we did for offset regression at test time.

    Args:

        pre (tensor): landm predictions for loc layers,

            Shape: [num_priors,10]

        priors (tensor): Prior boxes in center-offset form.

            Shape: [num_priors,4].

        variances: (list[float]) Variances of priorboxes

    Return:

        decoded landm predictions

    """
    landms = torch.cat((priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
                        priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
                        ), dim=1)
    return landms


def log_sum_exp(x):
    """Utility function for computing log_sum_exp while determining

    This will be used to determine unaveraged confidence loss across

    all examples in a batch.

    Args:

        x (Variable(tensor)): conf_preds from conf layers

    """
    x_max = x.data.max()
    return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max


# Original author: Francisco Massa:
# https://github.com/fmassa/object-detection.torch
# Ported to PyTorch by Max deGroot (02/01/2017)
def nms(boxes, scores, overlap=0.5, top_k=200):
    """Apply non-maximum suppression at test time to avoid detecting too many

    overlapping bounding boxes for a given object.

    Args:

        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].

        scores: (tensor) The class predscores for the img, Shape:[num_priors].

        overlap: (float) The overlap thresh for suppressing unnecessary boxes.

        top_k: (int) The Maximum number of box preds to consider.

    Return:

        The indices of the kept boxes with respect to num_priors.

    """

    keep = torch.Tensor(scores.size(0)).fill_(0).long()
    if boxes.numel() == 0:
        return keep
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    area = torch.mul(x2 - x1, y2 - y1)
    v, idx = scores.sort(0)  # sort in ascending order
    # I = I[v >= 0.01]
    idx = idx[-top_k:]  # indices of the top-k largest vals
    xx1 = boxes.new()
    yy1 = boxes.new()
    xx2 = boxes.new()
    yy2 = boxes.new()
    w = boxes.new()
    h = boxes.new()

    # keep = torch.Tensor()
    count = 0
    while idx.numel() > 0:
        i = idx[-1]  # index of current largest val
        # keep.append(i)
        keep[count] = i
        count += 1
        if idx.size(0) == 1:
            break
        idx = idx[:-1]  # remove kept element from view
        # load bboxes of next highest vals
        torch.index_select(x1, 0, idx, out=xx1)
        torch.index_select(y1, 0, idx, out=yy1)
        torch.index_select(x2, 0, idx, out=xx2)
        torch.index_select(y2, 0, idx, out=yy2)
        # store element-wise max with next highest score
        xx1 = torch.clamp(xx1, min=x1[i])
        yy1 = torch.clamp(yy1, min=y1[i])
        xx2 = torch.clamp(xx2, max=x2[i])
        yy2 = torch.clamp(yy2, max=y2[i])
        w.resize_as_(xx2)
        h.resize_as_(yy2)
        w = xx2 - xx1
        h = yy2 - yy1
        # check sizes of xx1 and xx2.. after each iteration
        w = torch.clamp(w, min=0.0)
        h = torch.clamp(h, min=0.0)
        inter = w*h
        # IoU = i / (area(a) + area(b) - i)
        rem_areas = torch.index_select(area, 0, idx)  # load remaining areas)
        union = (rem_areas - inter) + area[i]
        IoU = inter/union  # store result in iou
        # keep only elements with an IoU <= overlap
        idx = idx[IoU.le(overlap)]
    return keep, count