File size: 5,502 Bytes
3ad86c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
""" AdamW Optimizer
Impl copied from PyTorch master

NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference
"""
import math
from typing import Tuple

import torch
from torch.optim.optimizer import Optimizer

from ._types import ParamsT


class AdamWLegacy(Optimizer):
    r"""Implements AdamW algorithm.

    NOTE: This impl has been deprecated in favour of torch.optim.NAdam and remains as a reference

    References:
        - Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980
        - Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101
        - On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ

    Args:
        params: iterable of parameters to optimize or dicts defining parameter groups
        lr: learning rate
        betas: coefficients used for computing running averages of gradient and its square
        eps: term added to the denominator to improve numerical stability
        weight_decay: weight decay coefficient
        amsgrad: whether to use the AMSGrad variant of this algorithm
            from the paper `On the Convergence of Adam and Beyond`
        caution: apply caution when using AdamW
    """

    def __init__(
            self,
            params: ParamsT,
            lr: float = 1e-3,
            betas: Tuple[float, float] = (0.9, 0.999),
            eps: float = 1e-8,
            weight_decay: float = 1e-2,
            amsgrad: bool = False,
            caution: bool = False,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            amsgrad=amsgrad,
            caution=caution,
        )
        super(AdamWLegacy, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(AdamWLegacy, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('amsgrad', False)
            group.setdefault('caution', False)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue

                # Perform stepweight decay
                p.data.mul_(1 - group['lr'] * group['weight_decay'])

                # Perform optimization step
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
                amsgrad = group['amsgrad']

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state['max_exp_avg_sq'] = torch.zeros_like(p)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                if amsgrad:
                    max_exp_avg_sq = state['max_exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1
                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
                if amsgrad:
                    # Maintains the maximum of all 2nd moment running avg. till now
                    torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
                    # Use the max. for normalizing running avg. of gradient
                    denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
                else:
                    denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])

                step_size = group['lr'] / bias_correction1

                if group['caution']:
                    # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
                    mask = (exp_avg * grad > 0).to(grad.dtype)
                    mask.div_(mask.mean().clamp_(min=1e-3))
                    exp_avg = exp_avg * mask

                p.addcdiv_(exp_avg, denom, value=-step_size)

        return loss