File size: 20,660 Bytes
abee7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
""" Optimzier Tests

These tests were adapted from PyTorch' optimizer tests.

"""
import functools
import importlib
import os
from copy import deepcopy

import pytest
import torch
from torch.nn import Parameter
from torch.testing._internal.common_utils import TestCase

from timm.optim import create_optimizer_v2, list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo
from timm.optim import param_groups_layer_decay, param_groups_weight_decay
from timm.scheduler import PlateauLRScheduler

torch_backend = os.environ.get('TORCH_BACKEND')
if torch_backend is not None:
    importlib.import_module(torch_backend)
torch_device = os.environ.get('TORCH_DEVICE', 'cuda')

# HACK relying on internal PyTorch test functionality for comparisons that I don't want to write
torch_tc = TestCase()


def _test_basic_cases_template(weight, bias, input, constructor, scheduler_constructors):
    weight = Parameter(weight)
    bias = Parameter(bias)
    input = Parameter(input)
    optimizer = constructor(weight, bias)
    schedulers = []
    for scheduler_constructor in scheduler_constructors:
        schedulers.append(scheduler_constructor(optimizer))

    # to check if the optimizer can be printed as a string
    optimizer.__repr__()

    def fn():
        optimizer.zero_grad()
        y = weight.mv(input)
        if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
            y = y.cuda(bias.get_device())
        loss = (y + bias).pow(2).sum()
        loss.backward()
        return loss

    initial_value = fn().item()
    for _i in range(200):
        for scheduler in schedulers:
            if isinstance(scheduler, PlateauLRScheduler):
                val_loss = fn()
                scheduler.step(val_loss)
            else:
                scheduler.step()
        optimizer.step(fn)

    assert fn().item() < initial_value


def _test_state_dict(weight, bias, input, constructor):
    weight = Parameter(weight)
    bias = Parameter(bias)
    input = Parameter(input)

    def fn_base(optimizer, weight, bias):
        optimizer.zero_grad()
        i = input_device if weight.device.type != 'cpu' else input
        loss = (weight.mv(i) + bias).pow(2).sum()
        loss.backward()
        return loss

    optimizer = constructor(weight, bias)
    fn = functools.partial(fn_base, optimizer, weight, bias)

    # Prime the optimizer
    for _i in range(20):
        optimizer.step(fn)
    # Clone the weights and construct new optimizer for them
    with torch.no_grad():
        weight_c = Parameter(weight.clone().detach())
        bias_c = Parameter(bias.clone().detach())
    optimizer_c = constructor(weight_c, bias_c)
    fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c)
    # Load state dict
    state_dict = deepcopy(optimizer.state_dict())
    state_dict_c = deepcopy(optimizer.state_dict())
    optimizer_c.load_state_dict(state_dict_c)

    # Run both optimizations in parallel
    for _i in range(20):
        optimizer.step(fn)
        optimizer_c.step(fn_c)
        torch_tc.assertEqual(weight, weight_c)
        torch_tc.assertEqual(bias, bias_c)
    # Make sure state dict is deterministic with equal but not identical parameters
    torch_tc.assertEqual(optimizer.state_dict(), optimizer_c.state_dict())
    # Make sure repeated parameters have identical representation in state dict
    optimizer_c.param_groups.extend(optimizer_c.param_groups)
    torch_tc.assertEqual(optimizer.state_dict()['param_groups'][-1], optimizer_c.state_dict()['param_groups'][-1])

    # Check that state dict can be loaded even when we cast parameters
    # to a different type and move to a different device.
    if torch_device == 'cpu':
        return
    elif torch_device == 'cuda' and not torch.cuda.is_available():
        return

    with torch.no_grad():
        input_device = Parameter(input.clone().detach().float().to(torch_device))
        weight_device = Parameter(weight.clone().detach().to(torch_device))
        bias_device = Parameter(bias.clone().detach().to(torch_device))
    optimizer_device = constructor(weight_device, bias_device)
    fn_device = functools.partial(fn_base, optimizer_device, weight_device, bias_device)

    state_dict = deepcopy(optimizer.state_dict())
    state_dict_c = deepcopy(optimizer.state_dict())
    optimizer_device.load_state_dict(state_dict_c)

    # Make sure state dict wasn't modified
    torch_tc.assertEqual(state_dict, state_dict_c)

    for _i in range(20):
        optimizer.step(fn)
        optimizer_device.step(fn_device)
        torch_tc.assertEqual(weight, weight_device)
        torch_tc.assertEqual(bias, bias_device)

    # validate deepcopy() copies all public attributes
    def getPublicAttr(obj):
        return set(k for k in obj.__dict__ if not k.startswith('_'))

    assert getPublicAttr(optimizer) == getPublicAttr(deepcopy(optimizer))


def _test_basic_cases(constructor, scheduler_constructors=None):
    if scheduler_constructors is None:
        scheduler_constructors = []
    _test_state_dict(
        torch.randn(10, 5),
        torch.randn(10),
        torch.randn(5),
        constructor
    )
    _test_basic_cases_template(
        torch.randn(10, 5),
        torch.randn(10),
        torch.randn(5),
        constructor,
        scheduler_constructors
    )
    # non-contiguous parameters
    _test_basic_cases_template(
        torch.randn(10, 5, 2)[..., 0],
        torch.randn(10, 2)[..., 0],
        torch.randn(5),
        constructor,
        scheduler_constructors
    )
    # CUDA
    if torch_device == 'cpu':
        return
    elif torch_device == 'cuda' and not torch.cuda.is_available():
        return

    _test_basic_cases_template(
        torch.randn(10, 5).to(torch_device),
        torch.randn(10).to(torch_device),
        torch.randn(5).to(torch_device),
        constructor,
        scheduler_constructors
    )


def _test_model(optimizer, params, device=torch.device('cpu'), after_step=0):
    weight = torch.tensor(
        [[-0.2109, -0.4976], [-0.1413, -0.3420], [-0.2524, 0.6976]],
        device=device, requires_grad=True)
    bias = torch.tensor([-0.1085, -0.2979, 0.6892], device=device, requires_grad=True)
    weight2 = torch.tensor([[-0.0508, -0.3941, -0.2843]], device=device, requires_grad=True)
    bias2 = torch.tensor([-0.0711], device=device, requires_grad=True)
    input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], device=device).reshape(3, 2)

    model = torch.nn.Sequential(torch.nn.Linear(2, 3),
                                torch.nn.Sigmoid(),
                                torch.nn.Linear(3, 1),
                                torch.nn.Sigmoid())
    model.to(device)

    pretrained_dict = model.state_dict()
    pretrained_dict['0.weight'] = weight
    pretrained_dict['0.bias'] = bias
    pretrained_dict['2.weight'] = weight2
    pretrained_dict['2.bias'] = bias2
    model.load_state_dict(pretrained_dict)

    optimizer = create_optimizer_v2(model, opt=optimizer, **params)

    prev_loss = float('inf')
    for i in range(20):
        optimizer.zero_grad()
        output = model(input)
        loss = output.sum()
        loss.backward()
        loss = loss.item()
        if i > after_step:
            assert loss < prev_loss
        prev_loss = loss
        optimizer.step()


def rosenbrock(tensor):
    x, y = tensor
    return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2


def drosenbrock(tensor):
    x, y = tensor
    return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2)))


def _test_rosenbrock(constructor, scheduler_constructors=None):
    if scheduler_constructors is None:
        scheduler_constructors = []
    params_t = torch.tensor([1.5, 1.5])

    params = Parameter(params_t)
    optimizer = constructor([params])
    schedulers = []
    for scheduler_constructor in scheduler_constructors:
        schedulers.append(scheduler_constructor(optimizer))

    solution = torch.tensor([1, 1])
    initial_dist = params.clone().detach().dist(solution)


    def get_grad(_param, _sparse_grad, _w):
        grad = drosenbrock(params.clone().detach())
        # Depending on w, provide only the x or y gradient
        if _sparse_grad:
            if _w:
                i = torch.tensor([[0, 0]], dtype=torch.int64)
                x = grad[0]
                v = torch.tensor([x / 4.0, x - x / 4.0])
            else:
                i = torch.tensor([[1, 1]], dtype=torch.int64)
                y = grad[1]
                v = torch.tensor([y - y / 4.0, y / 4.0])
            grad_out = torch.sparse_coo_tensor(i, v, (2,), dtype=v.dtype)
        else:
            if _w:
                grad_out = torch.tensor([grad[0], 0], dtype=_param.dtype)
            else:
                grad_out = torch.tensor([0, grad[1]], dtype=_param.dtype)
        return grad_out


    def eval(_param, _sparse_grad, _w):
        # Depending on w, provide only the x or y gradient
        optimizer.zero_grad()
        loss = rosenbrock(_param)
        loss.backward()

        grad_out = get_grad(_param, _sparse_grad, _w)
        with torch.no_grad():
            _param.grad = grad_out.to_dense()

        return loss

    for i in range(2000):
        # Do cyclic coordinate descent
        w = i % 2
        optimizer.step(functools.partial(eval, params, True, w))
        for scheduler in schedulers:
            if isinstance(scheduler, PlateauLRScheduler):
                scheduler.step(rosenbrock(params))
            else:
                scheduler.step()

    torch_tc.assertLessEqual(params.clone().detach().dist(solution), initial_dist)


def _build_params_dict(weight, bias, **kwargs):
    return [{'params': [weight]}, dict(params=[bias], **kwargs)]


def _build_params_dict_single(weight, bias, **kwargs):
    return [dict(params=bias, **kwargs)]


@pytest.mark.parametrize('optimizer', list_optimizers(exclude_filters=('fused*', 'bnb*')))
def test_optim_factory(optimizer):
    assert issubclass(get_optimizer_class(optimizer, bind_defaults=False), torch.optim.Optimizer)

    opt_info = get_optimizer_info(optimizer)
    assert isinstance(opt_info, OptimInfo)

    lr = (1e-2,) * 4
    if optimizer in ('mars', 'nadam', 'claprop', 'crmsproptf', 'cadafactorbv', 'csgdw', 'clamb'):
        lr = (1e-3,) * 4
    elif optimizer in ('cmars',):
        lr = (1e-4,) * 4

    try:
        if not opt_info.second_order:  # basic tests don't support second order right now
            # test basic cases that don't need specific tuning via factory test
            _test_basic_cases(
                lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=lr[0])
            )
            _test_basic_cases(
                lambda weight, bias: create_optimizer_v2(
                    _build_params_dict(weight, bias, lr=lr[1]),
                    optimizer,
                    lr=lr[1] / 10)
            )
            _test_basic_cases(
                lambda weight, bias: create_optimizer_v2(
                    _build_params_dict_single(weight, bias, lr=lr[2]),
                    optimizer,
                    lr=lr[2] / 10)
            )
            _test_basic_cases(
                lambda weight, bias: create_optimizer_v2(
                    _build_params_dict_single(weight, bias, lr=lr[3]),
                    optimizer)
            )
    except TypeError as e:
        if 'radamw' in optimizer:
            pytest.skip("Expected for 'radamw' (decoupled decay) to fail in older PyTorch versions.")
        else:
            raise e



#@pytest.mark.parametrize('optimizer', ['sgd', 'momentum'])
# FIXME momentum variant frequently fails in GitHub runner, but never local after many attempts
@pytest.mark.parametrize('optimizer', ['sgd'])
def test_sgd(optimizer):
    # _test_basic_cases(
    #     lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3),
    #     [lambda opt: StepLR(opt, gamma=0.9, step_size=10)]
    # )
    # _test_basic_cases(
    #     lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3),
    #     [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="linear")]
    # )
    # _test_basic_cases(
    #     lambda weight, bias: optimizer([weight, bias], lr=1e-3),
    #     [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="constant")]
    # )
    # _test_basic_cases(
    #     lambda weight, bias: optimizer([weight, bias], lr=1e-3),
    #     [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
    #      lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4)]
    # )
    # _test_basic_cases(
    #     lambda weight, bias: optimizer([weight, bias], lr=1e-3),
    #     [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
    #      lambda opt: ReduceLROnPlateau(opt)]
    # )
    # _test_basic_cases(
    #     lambda weight, bias: optimizer([weight, bias], lr=1e-3),
    #     [lambda opt: StepLR(opt, gamma=0.99, step_size=10),
    #      lambda opt: ExponentialLR(opt, gamma=0.99),
    #      lambda opt: ReduceLROnPlateau(opt)]
    # )
    _test_basic_cases(
        lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1)
    )
    _test_basic_cases(
        lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1, weight_decay=.1)
    )
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer',  ['adamw', 'adam', 'nadam', 'adamax', 'nadamw'])
def test_adam(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=5e-2)
    )
    _test_model(optimizer, dict(lr=5e-2))


@pytest.mark.parametrize('optimizer',  ['adopt', 'adoptw'])
def test_adopt(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=3e-3)
    )
    _test_model(optimizer, dict(lr=5e-2), after_step=1)  # note no convergence in first step for ADOPT


@pytest.mark.parametrize('optimizer',  ['adan', 'adanw'])
def test_adan(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=5e-2), after_step=1)  # note no convergence in first step for ADOPT


@pytest.mark.parametrize('optimizer',  ['adabelief'])
def test_adabelief(optimizer):
    _test_basic_cases(
        lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1)
    )
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=5e-2)
    )
    _test_model(optimizer, dict(lr=5e-2))


@pytest.mark.parametrize('optimizer',  ['radam', 'radabelief'])
def test_rectified(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer',   ['adadelta', 'adagrad'])
def test_adaother(optimizer):
    _test_basic_cases(
        lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1)
    )
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-1)
    )
    _test_model(optimizer, dict(lr=5e-2))


@pytest.mark.parametrize('optimizer',   ['adafactor', 'adafactorbv'])
def test_adafactor(optimizer):
    _test_basic_cases(
        lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1)
    )
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=5e-2)
    )
    _test_model(optimizer, dict(lr=5e-2))


@pytest.mark.parametrize('optimizer',  ['lamb', 'lambc'])
def test_lamb(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer', ['laprop'])
def test_laprop(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-2)
    )
    _test_model(optimizer, dict(lr=1e-2))


@pytest.mark.parametrize('optimizer',  ['lars', 'larc', 'nlars', 'nlarc'])
def test_lars(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer',  ['madgrad', 'madgradw'])
def test_madgrad(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-2)
    )
    _test_model(optimizer, dict(lr=1e-2))


@pytest.mark.parametrize('optimizer',  ['mars'])
def test_mars(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=5e-2), after_step=1)  # note no convergence in first step for ADOPT


@pytest.mark.parametrize('optimizer',  ['novograd'])
def test_novograd(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer', ['rmsprop', 'rmsproptf'])
def test_rmsprop(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-2)
    )
    _test_model(optimizer, dict(lr=1e-2))


@pytest.mark.parametrize('optimizer', ['adamp'])
def test_adamp(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=5e-2)
    )
    _test_model(optimizer, dict(lr=5e-2))


@pytest.mark.parametrize('optimizer', ['sgdp'])
def test_sgdp(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )
    _test_model(optimizer, dict(lr=1e-3))


@pytest.mark.parametrize('optimizer', ['lookahead_sgd', 'lookahead_momentum'])
def test_lookahead_sgd(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)
    )


@pytest.mark.parametrize('optimizer', ['lookahead_adamw', 'lookahead_adam'])
def test_lookahead_adam(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=5e-2)
    )


@pytest.mark.parametrize('optimizer', ['lookahead_radam'])
def test_lookahead_radam(optimizer):
    _test_rosenbrock(
        lambda params: create_optimizer_v2(params, optimizer, lr=1e-4)
    )


def test_param_groups_layer_decay_with_end_decay():
    model = torch.nn.Sequential(
        torch.nn.Linear(10, 5),
        torch.nn.ReLU(),
        torch.nn.Linear(5, 2)
    )
    
    param_groups = param_groups_layer_decay(
        model,
        weight_decay=0.05,
        layer_decay=0.75,
        end_layer_decay=0.5,
        verbose=True
    )
    
    assert len(param_groups) > 0
    # Verify layer scaling is applied with end decay
    for group in param_groups:
        assert 'lr_scale' in group
        assert group['lr_scale'] <= 1.0
        assert group['lr_scale'] >= 0.5


def test_param_groups_layer_decay_with_matcher():
    class ModelWithMatcher(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.layer1 = torch.nn.Linear(10, 5)
            self.layer2 = torch.nn.Linear(5, 2)
            
        def group_matcher(self, coarse=False):
            return lambda name: int(name.split('.')[0][-1])
            
    model = ModelWithMatcher()
    param_groups = param_groups_layer_decay(
        model,
        weight_decay=0.05,
        layer_decay=0.75,
        verbose=True
    )
    
    assert len(param_groups) > 0
    # Verify layer scaling is applied
    for group in param_groups:
        assert 'lr_scale' in group
        assert 'weight_decay' in group
        assert len(group['params']) > 0


def test_param_groups_weight_decay():
    model = torch.nn.Sequential(
        torch.nn.Linear(10, 5),
        torch.nn.ReLU(),
        torch.nn.Linear(5, 2)
    )
    weight_decay = 0.01
    no_weight_decay_list = ['1.weight']
    
    param_groups = param_groups_weight_decay(
        model, 
        weight_decay=weight_decay,
        no_weight_decay_list=no_weight_decay_list
    )
    
    assert len(param_groups) == 2
    assert param_groups[0]['weight_decay'] == 0.0
    assert param_groups[1]['weight_decay'] == weight_decay
    
    # Verify parameters are correctly grouped
    no_decay_params = set(param_groups[0]['params'])
    decay_params = set(param_groups[1]['params'])
    
    for name, param in model.named_parameters():
        if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list:
            assert param in no_decay_params
        else:
            assert param in decay_params