File size: 28,475 Bytes
847619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#!/usr/bin/env python3
""" Model Benchmark Script

An inference and train step benchmark script for timm models.

Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import csv
import json
import logging
import time
from collections import OrderedDict
from contextlib import suppress
from functools import partial

import torch
import torch.nn as nn
import torch.nn.parallel

from timm.data import resolve_data_config
from timm.layers import set_fast_norm
from timm.models import create_model, is_model, list_models
from timm.optim import create_optimizer_v2
from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs,\
    reparameterize_model

has_apex = False
try:
    from apex import amp
    has_apex = True
except ImportError:
    pass

try:
    from deepspeed.profiling.flops_profiler import get_model_profile
    has_deepspeed_profiling = True
except ImportError as e:
    has_deepspeed_profiling = False

try:
    from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis
    has_fvcore_profiling = True
except ImportError as e:
    FlopCountAnalysis = None
    has_fvcore_profiling = False

try:
    from functorch.compile import memory_efficient_fusion
    has_functorch = True
except ImportError as e:
    has_functorch = False

has_compile = hasattr(torch, 'compile')

if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('validate')


parser = argparse.ArgumentParser(description='PyTorch Benchmark')

# benchmark specific args
parser.add_argument('--model-list', metavar='NAME', default='',
                    help='txt file based list of model names to benchmark')
parser.add_argument('--bench', default='both', type=str,
                    help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'")
parser.add_argument('--detail', action='store_true', default=False,
                    help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False')
parser.add_argument('--no-retry', action='store_true', default=False,
                    help='Do not decay batch size and retry on error.')
parser.add_argument('--results-file', default='', type=str,
                    help='Output csv file for validation results (summary)')
parser.add_argument('--results-format', default='csv', type=str,
                    help='Format for results file one of (csv, json) (default: csv).')
parser.add_argument('--num-warm-iter', default=10, type=int,
                    help='Number of warmup iterations (default: 10)')
parser.add_argument('--num-bench-iter', default=40, type=int,
                    help='Number of benchmark iterations (default: 40)')
parser.add_argument('--device', default='cuda', type=str,
                    help="device to run benchmark on")

# common inference / train args
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50',
                    help='model architecture (default: resnet50)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
                    metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
                    metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
                    metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--use-train-size', action='store_true', default=False,
                    help='Run inference at train size, not test-input-size if it exists.')
parser.add_argument('--num-classes', type=int, default=None,
                    help='Number classes in dataset')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
                    help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--channels-last', action='store_true', default=False,
                    help='Use channels_last memory layout')
parser.add_argument('--grad-checkpointing', action='store_true', default=False,
                    help='Enable gradient checkpointing through model blocks/stages')
parser.add_argument('--amp', action='store_true', default=False,
                    help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.')
parser.add_argument('--amp-dtype', default='float16', type=str,
                    help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.')
parser.add_argument('--precision', default='float32', type=str,
                    help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)')
parser.add_argument('--fuser', default='', type=str,
                    help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
parser.add_argument('--fast-norm', default=False, action='store_true',
                    help='enable experimental fast-norm')
parser.add_argument('--reparam', default=False, action='store_true',
                    help='Reparameterize model')
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs)
parser.add_argument('--torchcompile-mode', type=str, default=None,
                    help="torch.compile mode (default: None).")

# codegen (model compilation) options
scripting_group = parser.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true',
                             help='convert model torchscript for inference')
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor',
                             help="Enable compilation w/ specified backend (default: inductor).")
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
                             help="Enable AOT Autograd optimization.")

# train optimizer parameters
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
                    help='Optimizer (default: "sgd"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
                    help='Optimizer Epsilon (default: None, use opt default)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
                    help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                    help='Optimizer momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.0001,
                    help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
                    help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
                    help='Gradient clipping mode. One of ("norm", "value", "agc")')


# model regularization / loss params that impact model or loss fn
parser.add_argument('--smoothing', type=float, default=0.1,
                    help='Label smoothing (default: 0.1)')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
                    help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
                    help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
                    help='Drop block rate (default: None)')


def timestamp(sync=False):
    return time.perf_counter()


def cuda_timestamp(sync=False, device=None):
    if sync:
        torch.cuda.synchronize(device=device)
    return time.perf_counter()


def count_params(model: nn.Module):
    return sum([m.numel() for m in model.parameters()])


def resolve_precision(precision: str):
    assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32')
    amp_dtype = None  # amp disabled
    model_dtype = torch.float32
    data_dtype = torch.float32
    if precision == 'amp':
        amp_dtype = torch.float16
    elif precision == 'amp_bfloat16':
        amp_dtype = torch.bfloat16
    elif precision == 'float16':
        model_dtype = torch.float16
        data_dtype = torch.float16
    elif precision == 'bfloat16':
        model_dtype = torch.bfloat16
        data_dtype = torch.bfloat16
    return amp_dtype, model_dtype, data_dtype


def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False):
    _, macs, _ = get_model_profile(
        model=model,
        input_shape=(batch_size,) + input_size,  # input shape/resolution
        print_profile=detailed,  # prints the model graph with the measured profile attached to each module
        detailed=detailed,  # print the detailed profile
        warm_up=10,  # the number of warm-ups before measuring the time of each module
        as_string=False,  # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k)
        output_file=None,  # path to the output file. If None, the profiler prints to stdout.
        ignore_modules=None)  # the list of modules to ignore in the profiling
    return macs, 0  # no activation count in DS


def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False):
    if force_cpu:
        model = model.to('cpu')
    device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
    example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype)
    fca = FlopCountAnalysis(model, example_input)
    aca = ActivationCountAnalysis(model, example_input)
    if detailed:
        fcs = flop_count_str(fca)
        print(fcs)
    return fca.total(), aca.total()


class BenchmarkRunner:
    def __init__(
            self,
            model_name,
            detail=False,
            device='cuda',
            torchscript=False,
            torchcompile=None,
            torchcompile_mode=None,
            aot_autograd=False,
            reparam=False,
            precision='float32',
            fuser='',
            num_warm_iter=10,
            num_bench_iter=50,
            use_train_size=False,
            **kwargs
    ):
        self.model_name = model_name
        self.detail = detail
        self.device = device
        self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision)
        self.channels_last = kwargs.pop('channels_last', False)
        if self.amp_dtype is not None:
            self.amp_autocast = partial(torch.amp.autocast, device_type=device, dtype=self.amp_dtype)
        else:
            self.amp_autocast = suppress

        if fuser:
            set_jit_fuser(fuser)
        self.model = create_model(
            model_name,
            num_classes=kwargs.pop('num_classes', None),
            in_chans=3,
            global_pool=kwargs.pop('gp', 'fast'),
            scriptable=torchscript,
            drop_rate=kwargs.pop('drop', 0.),
            drop_path_rate=kwargs.pop('drop_path', None),
            drop_block_rate=kwargs.pop('drop_block', None),
            **kwargs.pop('model_kwargs', {}),
        )
        if reparam:
            self.model = reparameterize_model(self.model)
        self.model.to(
            device=self.device,
            dtype=self.model_dtype,
            memory_format=torch.channels_last if self.channels_last else None,
        )
        self.num_classes = self.model.num_classes
        self.param_count = count_params(self.model)
        _logger.info('Model %s created, param count: %d' % (model_name, self.param_count))

        data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size)
        self.input_size = data_config['input_size']
        self.batch_size = kwargs.pop('batch_size', 256)

        self.compiled = False
        if torchscript:
            self.model = torch.jit.script(self.model)
            self.compiled = True
        elif torchcompile:
            assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.'
            torch._dynamo.reset()
            self.model = torch.compile(self.model, backend=torchcompile, mode=torchcompile_mode)
            self.compiled = True
        elif aot_autograd:
            assert has_functorch, "functorch is needed for --aot-autograd"
            self.model = memory_efficient_fusion(self.model)
            self.compiled = True

        self.example_inputs = None
        self.num_warm_iter = num_warm_iter
        self.num_bench_iter = num_bench_iter
        self.log_freq = num_bench_iter // 5
        if 'cuda' in self.device:
            self.time_fn = partial(cuda_timestamp, device=self.device)
        else:
            self.time_fn = timestamp

    def _init_input(self):
        self.example_inputs = torch.randn(
            (self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype)
        if self.channels_last:
            self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last)


class InferenceBenchmarkRunner(BenchmarkRunner):

    def __init__(
            self,
            model_name,
            device='cuda',
            torchscript=False,
            **kwargs
    ):
        super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
        self.model.eval()

    def run(self):
        def _step():
            t_step_start = self.time_fn()
            with self.amp_autocast():
                output = self.model(self.example_inputs)
            t_step_end = self.time_fn(True)
            return t_step_end - t_step_start

        _logger.info(
            f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
            f'input size {self.input_size} and batch size {self.batch_size}.')

        with torch.no_grad():
            self._init_input()

            for _ in range(self.num_warm_iter):
                _step()

            total_step = 0.
            num_samples = 0
            t_run_start = self.time_fn()
            for i in range(self.num_bench_iter):
                delta_fwd = _step()
                total_step += delta_fwd
                num_samples += self.batch_size
                num_steps = i + 1
                if num_steps % self.log_freq == 0:
                    _logger.info(
                        f"Infer [{num_steps}/{self.num_bench_iter}]."
                        f" {num_samples / total_step:0.2f} samples/sec."
                        f" {1000 * total_step / num_steps:0.3f} ms/step.")
            t_run_end = self.time_fn(True)
            t_run_elapsed = t_run_end - t_run_start

        results = dict(
            samples_per_sec=round(num_samples / t_run_elapsed, 2),
            step_time=round(1000 * total_step / self.num_bench_iter, 3),
            batch_size=self.batch_size,
            img_size=self.input_size[-1],
            param_count=round(self.param_count / 1e6, 2),
        )

        retries = 0 if self.compiled else 2  # skip profiling if model is scripted
        while retries:
            retries -= 1
            try:
                if has_deepspeed_profiling:
                    macs, _ = profile_deepspeed(self.model, self.input_size)
                    results['gmacs'] = round(macs / 1e9, 2)
                elif has_fvcore_profiling:
                    macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries)
                    results['gmacs'] = round(macs / 1e9, 2)
                    results['macts'] = round(activations / 1e6, 2)
            except RuntimeError as e:
                pass

        _logger.info(
            f"Inference benchmark of {self.model_name} done. "
            f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step")

        return results


class TrainBenchmarkRunner(BenchmarkRunner):

    def __init__(
            self,
            model_name,
            device='cuda',
            torchscript=False,
            **kwargs
    ):
        super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
        self.model.train()

        self.loss = nn.CrossEntropyLoss().to(self.device)
        self.target_shape = tuple()

        self.optimizer = create_optimizer_v2(
            self.model,
            opt=kwargs.pop('opt', 'sgd'),
            lr=kwargs.pop('lr', 1e-4))

        if kwargs.pop('grad_checkpointing', False):
            self.model.set_grad_checkpointing()

    def _gen_target(self, batch_size):
        return torch.empty(
            (batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes)

    def run(self):
        def _step(detail=False):
            self.optimizer.zero_grad()  # can this be ignored?
            t_start = self.time_fn()
            t_fwd_end = t_start
            t_bwd_end = t_start
            with self.amp_autocast():
                output = self.model(self.example_inputs)
                if isinstance(output, tuple):
                    output = output[0]
                if detail:
                    t_fwd_end = self.time_fn(True)
                target = self._gen_target(output.shape[0])
                self.loss(output, target).backward()
                if detail:
                    t_bwd_end = self.time_fn(True)
            self.optimizer.step()
            t_end = self.time_fn(True)
            if detail:
                delta_fwd = t_fwd_end - t_start
                delta_bwd = t_bwd_end - t_fwd_end
                delta_opt = t_end - t_bwd_end
                return delta_fwd, delta_bwd, delta_opt
            else:
                delta_step = t_end - t_start
                return delta_step

        _logger.info(
            f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
            f'input size {self.input_size} and batch size {self.batch_size}.')

        self._init_input()

        for _ in range(self.num_warm_iter):
            _step()

        t_run_start = self.time_fn()
        if self.detail:
            total_fwd = 0.
            total_bwd = 0.
            total_opt = 0.
            num_samples = 0
            for i in range(self.num_bench_iter):
                delta_fwd, delta_bwd, delta_opt = _step(True)
                num_samples += self.batch_size
                total_fwd += delta_fwd
                total_bwd += delta_bwd
                total_opt += delta_opt
                num_steps = (i + 1)
                if num_steps % self.log_freq == 0:
                    total_step = total_fwd + total_bwd + total_opt
                    _logger.info(
                        f"Train [{num_steps}/{self.num_bench_iter}]."
                        f" {num_samples / total_step:0.2f} samples/sec."
                        f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd,"
                        f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd,"
                        f" {1000 * total_opt / num_steps:0.3f} ms/step opt."
                    )
            total_step = total_fwd + total_bwd + total_opt
            t_run_elapsed = self.time_fn() - t_run_start
            results = dict(
                samples_per_sec=round(num_samples / t_run_elapsed, 2),
                step_time=round(1000 * total_step / self.num_bench_iter, 3),
                fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3),
                bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3),
                opt_time=round(1000 * total_opt / self.num_bench_iter, 3),
                batch_size=self.batch_size,
                img_size=self.input_size[-1],
                param_count=round(self.param_count / 1e6, 2),
            )
        else:
            total_step = 0.
            num_samples = 0
            for i in range(self.num_bench_iter):
                delta_step = _step(False)
                num_samples += self.batch_size
                total_step += delta_step
                num_steps = (i + 1)
                if num_steps % self.log_freq == 0:
                    _logger.info(
                        f"Train [{num_steps}/{self.num_bench_iter}]."
                        f" {num_samples / total_step:0.2f} samples/sec."
                        f" {1000 * total_step / num_steps:0.3f} ms/step.")
            t_run_elapsed = self.time_fn() - t_run_start
            results = dict(
                samples_per_sec=round(num_samples / t_run_elapsed, 2),
                step_time=round(1000 * total_step / self.num_bench_iter, 3),
                batch_size=self.batch_size,
                img_size=self.input_size[-1],
                param_count=round(self.param_count / 1e6, 2),
            )

        _logger.info(
            f"Train benchmark of {self.model_name} done. "
            f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")

        return results


class ProfileRunner(BenchmarkRunner):

    def __init__(self, model_name, device='cuda', profiler='', **kwargs):
        super().__init__(model_name=model_name, device=device, **kwargs)
        if not profiler:
            if has_deepspeed_profiling:
                profiler = 'deepspeed'
            elif has_fvcore_profiling:
                profiler = 'fvcore'
        assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work."
        self.profiler = profiler
        self.model.eval()

    def run(self):
        _logger.info(
            f'Running profiler on {self.model_name} w/ '
            f'input size {self.input_size} and batch size {self.batch_size}.')

        macs = 0
        activations = 0
        if self.profiler == 'deepspeed':
            macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True)
        elif self.profiler == 'fvcore':
            macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True)

        results = dict(
            gmacs=round(macs / 1e9, 2),
            macts=round(activations / 1e6, 2),
            batch_size=self.batch_size,
            img_size=self.input_size[-1],
            param_count=round(self.param_count / 1e6, 2),
        )

        _logger.info(
            f"Profile of {self.model_name} done. "
            f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.")

        return results


def _try_run(
        model_name,
        bench_fn,
        bench_kwargs,
        initial_batch_size,
        no_batch_size_retry=False
):
    batch_size = initial_batch_size
    results = dict()
    error_str = 'Unknown'
    while batch_size:
        try:
            torch.cuda.empty_cache()
            bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs)
            results = bench.run()
            return results
        except RuntimeError as e:
            error_str = str(e)
            _logger.error(f'"{error_str}" while running benchmark.')
            if not check_batch_size_retry(error_str):
                _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.')
                break
            if no_batch_size_retry:
                break
        batch_size = decay_batch_step(batch_size)
        _logger.warning(f'Reducing batch size to {batch_size} for retry.')
    results['error'] = error_str
    return results


def benchmark(args):
    if args.amp:
        _logger.warning("Overriding precision to 'amp' since --amp flag set.")
        args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype])
    _logger.info(f'Benchmarking in {args.precision} precision. '
                 f'{"NHWC" if args.channels_last else "NCHW"} layout. '
                 f'torchscript {"enabled" if args.torchscript else "disabled"}')

    bench_kwargs = vars(args).copy()
    bench_kwargs.pop('amp')
    model = bench_kwargs.pop('model')
    batch_size = bench_kwargs.pop('batch_size')

    bench_fns = (InferenceBenchmarkRunner,)
    prefixes = ('infer',)
    if args.bench == 'both':
        bench_fns = (
            InferenceBenchmarkRunner,
            TrainBenchmarkRunner
        )
        prefixes = ('infer', 'train')
    elif args.bench == 'train':
        bench_fns = TrainBenchmarkRunner,
        prefixes = 'train',
    elif args.bench.startswith('profile'):
        # specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore
        if 'deepspeed' in args.bench:
            assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter"
            bench_kwargs['profiler'] = 'deepspeed'
        elif 'fvcore' in args.bench:
            assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter"
            bench_kwargs['profiler'] = 'fvcore'
        bench_fns = ProfileRunner,
        batch_size = 1

    model_results = OrderedDict(model=model)
    for prefix, bench_fn in zip(prefixes, bench_fns):
        run_results = _try_run(
            model,
            bench_fn,
            bench_kwargs=bench_kwargs,
            initial_batch_size=batch_size,
            no_batch_size_retry=args.no_retry,
        )
        if prefix and 'error' not in run_results:
            run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()}
        model_results.update(run_results)
        if 'error' in run_results:
            break
    if 'error' not in model_results:
        param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
        model_results.setdefault('param_count', param_count)
        model_results.pop('train_param_count', 0)
    return model_results


def main():
    setup_default_logging()
    args = parser.parse_args()
    model_cfgs = []
    model_names = []

    if args.fast_norm:
        set_fast_norm()

    if args.model_list:
        args.model = ''
        with open(args.model_list) as f:
            model_names = [line.rstrip() for line in f]
        model_cfgs = [(n, None) for n in model_names]
    elif args.model == 'all':
        # validate all models in a list of names with pretrained checkpoints
        args.pretrained = True
        model_names = list_models(pretrained=True, exclude_filters=['*in21k'])
        model_cfgs = [(n, None) for n in model_names]
    elif not is_model(args.model):
        # model name doesn't exist, try as wildcard filter
        model_names = list_models(args.model)
        model_cfgs = [(n, None) for n in model_names]

    if len(model_cfgs):
        _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
        results = []
        try:
            for m, _ in model_cfgs:
                if not m:
                    continue
                args.model = m
                r = benchmark(args)
                if r:
                    results.append(r)
                time.sleep(10)
        except KeyboardInterrupt as e:
            pass
        sort_key = 'infer_samples_per_sec'
        if 'train' in args.bench:
            sort_key = 'train_samples_per_sec'
        elif 'profile' in args.bench:
            sort_key = 'infer_gmacs'
        results = filter(lambda x: sort_key in x, results)
        results = sorted(results, key=lambda x: x[sort_key], reverse=True)
    else:
        results = benchmark(args)

    if args.results_file:
        write_results(args.results_file, results, format=args.results_format)

    # output results in JSON to stdout w/ delimiter for runner script
    print(f'--result\n{json.dumps(results, indent=4)}')


def write_results(results_file, results, format='csv'):
    with open(results_file, mode='w') as cf:
        if format == 'json':
            json.dump(results, cf, indent=4)
        else:
            if not isinstance(results, (list, tuple)):
                results = [results]
            if not results:
                return
            dw = csv.DictWriter(cf, fieldnames=results[0].keys())
            dw.writeheader()
            for r in results:
                dw.writerow(r)
            cf.flush()


if __name__ == '__main__':
    main()