File size: 21,537 Bytes
05d19fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
""" PyTorch Implementation of the Kron (PSGD) optimizer
This is a PSGD optimizer using a Kronecker-factored preconditioner.
This impl was adapted from https://github.com/evanatyourservice/kron_torch
by Evan Walters, licensed CC-BY-4.0.
Contributions to above also made by
* Lucas Nestler, added to his https://github.com/ClashLuke/HeavyBall implementation.
* Omead Pooladzandi https://github.com/opooladz
The above work drew from https://github.com/lixilinx/psgd_torch by Xi-Lin Li
This `timm` impl
* works with a wider variety of torch versions
* fixes some checkpoint save/restore (resume issues)
* adds decoupled weight-decay option
* has some refactoring, cleanup of args, default/group items
* warning about not having opt_einsum (unusable without)
"""
import logging
import string
import random
import warnings
from typing import Any, Callable, Dict, Optional, Tuple, Union
import numpy as np
import torch
try:
# NOTE opt_einsum needed to avoid blowing up memory with einsum ops
import opt_einsum
import torch.backends.opt_einsum
torch.backends.opt_einsum.enabled = True
torch.backends.opt_einsum.strategy = "auto-hq"
has_opt_einsum = True
except ImportError:
has_opt_einsum = False
try:
torch._dynamo.config.cache_size_limit = 1_000_000
has_dynamo = True
except AttributeError:
has_dynamo = False
from ._types import ParamsT
_logger = logging.getLogger(__name__)
def precond_update_prob_schedule(
n: float,
max_prob: float = 1.0,
min_prob: float = 0.03,
decay: float = 0.001,
flat_start: float = 500,
) -> torch.Tensor:
"""Anneal preconditioner update probability during beginning of training.
PSGD benefits from more preconditioner updates at the beginning of training,
but once the preconditioner is learned the update probability can drop low.
This schedule is an exponential anneal with a flat start. Default settings keep
update probability at 1.0 for 200 steps then exponentially anneal down to
`min_prob` by 4000 steps. Default settings work very well for most models and
training regimes.
"""
"""Exponential anneal with flat start."""
n = torch.tensor(n, dtype=torch.float32)
prob = max_prob * torch.exp(-decay * (n - flat_start))
prob.clamp_(min=min_prob, max=max_prob)
return prob
class Kron(torch.optim.Optimizer):
"""Implements PSGD Kron from https://github.com/lixilinx/psgd_torch.
Args:
params: Iterable of parameters to optimize or dicts defining parameter groups.
lr: Learning rate.
momentum: Momentum parameter.
weight_decay: Weight decay.
preconditioner_update_probability: Probability of updating the preconditioner.
If None, defaults to a schedule that anneals from 1.0 to 0.03 by 4000 steps.
max_size_triangular: Max size for dim's preconditioner to be triangular.
min_ndim_triangular: Minimum number of dimensions a layer needs to have triangular preconditioners.
memory_save_mode: 'one_diag', 'smart_one_diag', or 'all_diag', None is default
to set all preconditioners to be triangular, 'one_diag' sets the largest
or last dim to be diagonal per layer, and 'all_diag' sets all preconditioners to be diagonal.
momentum_into_precond_update: whether to send momentum into preconditioner
update instead of raw gradients.
mu_dtype: Dtype of the momentum accumulator.
precond_dtype: Dtype of the preconditioner.
decoupled_decay: AdamW style decoupled weight decay
flatten: Flatten dimensions instead of fully relying on expressions for higher rank params
flatten_start_dim: Start of flatten range, defaults to 2. Seems good tradeoff for ConvNets.
flatten_end_dim: End of flatten range, defaults to -1.
stochastic_weight_decay: Enable random modulation of weight decay
deterministic: Deterministic behaviour across save / load (resume). FIXME slow, needs work
"""
def __init__(
self,
params: ParamsT,
lr: float = 0.001,
momentum: float = 0.9,
weight_decay: float = 0.0,
preconditioner_update_probability: Optional[Union[Callable, float]] = None,
max_size_triangular: int = 2048,
min_ndim_triangular: int = 2,
memory_save_mode: Optional[str] = None,
momentum_into_precond_update: bool = True,
precond_lr: float = 0.1,
precond_init_scale: float = 1.0,
mu_dtype: Optional[torch.dtype] = None,
precond_dtype: Optional[torch.dtype] = None,
decoupled_decay: bool = False,
flatten: bool = False,
flatten_start_dim: int = 2,
flatten_end_dim: int = -1,
stochastic_weight_decay: bool = False,
deterministic: bool = False,
):
if not has_opt_einsum:
warnings.warn("It is highly recommended to have 'opt_einsum' installed for this optimizer.")
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= momentum < 1.0:
raise ValueError(f"Invalid beta parameter: {momentum}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
preconditioner_update_probability=preconditioner_update_probability,
max_size_triangular=max_size_triangular,
min_ndim_triangular=min_ndim_triangular,
memory_save_mode=memory_save_mode,
momentum_into_precond_update=momentum_into_precond_update,
precond_lr=precond_lr,
precond_init_scale=precond_init_scale,
mu_dtype=mu_dtype,
precond_dtype=precond_dtype,
decoupled_decay=decoupled_decay,
flatten=flatten,
flatten_start_dim=flatten_start_dim,
flatten_end_dim=flatten_end_dim,
stochastic_weight_decay=stochastic_weight_decay,
)
super(Kron, self).__init__(params, defaults)
self._param_exprs = {} # cache for einsum expr
self._tiny = torch.finfo(torch.bfloat16).tiny
self.rng = random.Random(1337)
self.deterministic = deterministic
# make compile optional (for bwd compat)
if has_dynamo:
self._calc_A_and_conjB = torch.compile(_calc_A_and_conjB, fullgraph=True, dynamic=False)
self._q_terms = torch.compile(_q_terms, fullgraph=True, dynamic=False)
self._precond_grad = torch.compile(_precond_grad, fullgraph=True, dynamic=False)
self._balance_Q = torch.compile(_balance_Q, fullgraph=True, dynamic=False)
else:
self._calc_A_and_conjB = _calc_A_and_conjB
self._q_terms = _q_terms
self._precond_grad = _precond_grad
self._balance_Q = _balance_Q
def __getstate__(self):
_dict = super().__getstate__()
_dict["rng"] = self.rng
return _dict
def state_dict(self) -> Dict[str, Any]:
# Get the optimizer's state dict
optimizer_state = super().state_dict()
# Add the generator state
optimizer_state['rng_state'] = self.rng.getstate()
return optimizer_state
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
# Extract and remove the RNG state from the state dict
rng_states = {}
if 'rng_state' in state_dict:
rng_states['rng_state'] = state_dict.pop('rng_state')
# Load the optimizer state
super().load_state_dict(state_dict)
state_dict.update(rng_states) # add back
# Restore the RNG state if it exists
if 'rng_state' in rng_states:
self.rng.setstate(rng_states['rng_state'])
def __setstate__(self, state):
super().__setstate__(state)
self._param_exprs = {}
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
total_momentum_size = 0
total_momentum_mb = 0
total_precond_size = 0
total_precond_mb = 0
for group in self.param_groups:
mu_dtype = group.get("mu_dtype")
precond_dtype = group.get("precond_dtype", torch.float32)
momentum_into_precond_update = group.get("momentum_into_precond_update", True)
update_prob = group.get("preconditioner_update_probability", None)
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
state = self.state[p]
flattened = False
if group['flatten']:
grad = safe_flatten(grad, group["flatten_start_dim"], group["flatten_end_dim"])
flattened = True
if len(state) == 0:
state["step"] = 0
state["update_counter"] = 0
state["momentum_buffer"] = torch.zeros_like(grad, dtype=mu_dtype or grad.dtype)
# init Q and einsum expressions on first step
state["Q"], exprs = _init_Q_exprs(
grad,
group["precond_init_scale"],
group["max_size_triangular"],
group["min_ndim_triangular"],
group["memory_save_mode"],
dtype=precond_dtype,
)
self._param_exprs[p] = exprs
# Accumulate sizes for log
momentum_size = state["momentum_buffer"].numel()
momentum_mb = momentum_size * state["momentum_buffer"].element_size() / 2**20
total_momentum_size += momentum_size
total_momentum_mb += momentum_mb
precond_size = sum(q.numel() for q in state["Q"])
precond_mb = sum(q.numel() * q.element_size() for q in state["Q"]) / 2**20
total_precond_size += precond_size
total_precond_mb += precond_mb
elif p not in self._param_exprs:
# init only the einsum expressions, called after state load, Q are loaded from state_dict
exprs = _init_Q_exprs(
grad,
group["precond_init_scale"],
group["max_size_triangular"],
group["min_ndim_triangular"],
group["memory_save_mode"],
dtype=precond_dtype,
init_q=False,
)
self._param_exprs[p] = exprs
else:
# retrieve cached expressions
exprs = self._param_exprs[p]
# update preconditioners all together deterministically
if update_prob is None:
update_prob = precond_update_prob_schedule
if callable(update_prob):
update_prob = update_prob(state["step"])
state["update_counter"] += 1
do_update = state["update_counter"] >= 1 / update_prob
if do_update:
state["update_counter"] = 0
state["step"] += 1
# Update momentum buffer
beta = group["momentum"]
bias_correction = 1 - beta ** state["step"]
momentum_buffer = state["momentum_buffer"]
momentum_buffer.mul_(group["momentum"]).add_(grad, alpha=1 - group["momentum"])
# Restore momentum dtype
if mu_dtype is not None:
momentum_buffer.copy_(momentum_buffer.to(dtype=mu_dtype))
debiased_momentum = (momentum_buffer / bias_correction).to(dtype=precond_dtype)
# Balance preconditioners roughly every 100 updates
balance = self.rng.random() < 0.01 and do_update
if grad.dim() > 1 and balance:
self._balance_Q(state["Q"])
# Update preconditioner
if do_update:
exprA, exprGs, _ = exprs
Q = state["Q"]
if self.deterministic:
torch_rng = torch.Generator(device=debiased_momentum.device)
torch_rng.manual_seed(self.rng.randint(0, 2 ** 31))
else:
torch_rng = None
V = torch.randn(
debiased_momentum.shape,
generator=torch_rng,
dtype=precond_dtype,
device=debiased_momentum.device,
)
G = debiased_momentum if momentum_into_precond_update else grad
A, conjB = self._calc_A_and_conjB(exprA, G, Q, V)
terms = self._q_terms(exprGs, A, conjB)
for q, (term1, term2) in zip(Q, terms):
tmp = term1 - term2
tmp *= group["precond_lr"]
if q.dim() < 2:
tmp *= q
tmp /= (term1 + term2).norm(float("inf")) + self._tiny
else:
tmp = torch.triu(tmp)
tmp /= _norm_lower_bound(term1 + term2) + self._tiny
tmp @= q
q.sub_(tmp)
# Precondition gradients
pre_grad = self._precond_grad(
state["Q"],
exprs,
debiased_momentum,
).to(dtype=p.dtype)
# RMS of pre_grad should be 1.0, so let's cap at 1.1
pre_grad.mul_(torch.clamp(1.1 / (pre_grad.square().mean().sqrt_() + 1e-8), max=1.0))
if flattened:
pre_grad = pre_grad.view(p.shape)
# Apply weight decay
weight_decay = group["weight_decay"]
if weight_decay != 0:
if group["stochastic_weight_decay"]:
weight_decay = 2 * self.rng.random() * weight_decay
if group["decoupled_decay"]:
p.mul_(1. - group["lr"] * weight_decay)
else:
pre_grad.add_(p, alpha=weight_decay)
# Update parameters
p.add_(pre_grad, alpha=-group["lr"])
if total_momentum_size > 0:
_logger.info(f"PSGD Momentum buffer size: {total_momentum_size} elements, {total_momentum_mb:.2f} MB")
_logger.info(f"PSGD Preconditioners size: {total_precond_size} elements, {total_precond_mb:.2f} MB")
return loss
def safe_flatten(tensor, start_dim=0, end_dim=-1):
ndim = tensor.ndim
# Convert negative end_dim to positive and clip to end
end_dim = min(end_dim if end_dim >= 0 else ndim + end_dim, ndim - 1)
# If tensor has fewer dims than start_dim or start > end, return tensor as is
if ndim <= start_dim or start_dim > end_dim:
return tensor
# Now safe to flatten
return tensor.flatten(start_dim, end_dim)
def _init_Q_exprs(
t,
scale,
max_size,
min_ndim_triangular,
memory_save_mode,
dtype=None,
init_q=True,
):
"""For a scalar or tensor t, we initialize its preconditioner Q and
reusable einsum expressions for updating Q and preconditioning gradient.
"""
letters = string.ascii_lowercase + string.ascii_uppercase
dtype = dtype if dtype is not None else t.dtype
shape = t.shape
Q = []
if len(shape) == 0: # scalar
if init_q:
Q.append(scale * torch.ones_like(t, dtype=dtype))
exprA = ",->"
exprGs = [",->"]
exprP = ",,->"
else: # tensor
if len(shape) > 13:
raise ValueError(f"Got tensor with dim {len(t.shape)}; Einstein runs out of letters!")
scale = scale ** (1 / len(shape))
if memory_save_mode is None:
dim_diag = [False for _ in shape]
elif memory_save_mode == "one_diag":
rev_sorted_dims = np.argsort(shape)[::-1]
dim_diag = [False for _ in shape]
dim_diag[rev_sorted_dims[0]] = True
elif memory_save_mode == "smart_one_diag":
# addition proposed by Lucas Nestler
rev_sorted_dims = np.argsort(shape)[::-1]
sorted_shape = sorted(shape)
dim_diag = [False for _ in shape]
if len(shape) >= 2 and sorted_shape[-1] > sorted_shape[-2]:
dim_diag[rev_sorted_dims[0]] = True
elif memory_save_mode == "all_diag":
dim_diag = [True for _ in shape]
else:
raise ValueError(
f"Invalid memory_save_mode: {memory_save_mode}, must be one of [None, 'one_diag', 'all_diag']")
piece1A, piece2A, piece3A = ([], "", "")
exprGs = []
piece1P, piece2P, piece3P, piece4P = ([], [], "", "")
for i, (size, dim_d) in enumerate(zip(shape, dim_diag)):
if (
size == 1
or size > max_size
or len(shape) < min_ndim_triangular
or dim_d
):
# use diagonal matrix as preconditioner for this dim
if init_q:
Q.append(scale * torch.ones(size, dtype=dtype, device=t.device))
piece1A.append(letters[i])
piece2A = piece2A + letters[i]
piece3A = piece3A + letters[i]
piece1 = "".join([letters[i + 13] if j == i else letters[j] for j in range(len(shape))])
subscripts = piece1 + "," + piece1 + "->" + letters[i + 13]
exprGs.append(subscripts)
piece1P.append(letters[i + 13])
piece2P.append(letters[i + 13])
piece3P = piece3P + letters[i + 13]
piece4P = piece4P + letters[i + 13]
else:
# use triangular matrix as preconditioner for this dim
if init_q:
Q.append(scale * torch.eye(size, dtype=dtype, device=t.device))
piece1A.append(letters[i] + letters[i + 13])
piece2A = piece2A + letters[i + 13]
piece3A = piece3A + letters[i]
piece1 = "".join([letters[i + 13] if j == i else letters[j] for j in range(len(shape))])
piece2 = "".join([letters[i + 26] if j == i else letters[j] for j in range(len(shape))])
subscripts = piece1 + "," + piece2 + "->" + letters[i + 13] + letters[i + 26]
exprGs.append(subscripts)
a, b, c = (letters[i], letters[i + 13], letters[i + 26])
piece1P.append(a + b)
piece2P.append(a + c)
piece3P = piece3P + c
piece4P = piece4P + b
exprA = ",".join(piece1A) + "," + piece2A + "->" + piece3A
exprP = ",".join(piece1P) + "," + ",".join(piece2P) + "," + piece3P + "->" + piece4P
exprGs = tuple(exprGs)
if init_q:
return [Q, (exprA, exprGs, exprP)]
else:
return exprA, exprGs, exprP
def _lb(A, max_abs):
A = A / max_abs
aa = torch.real(A * A.conj())
value0, i = torch.max(torch.sum(aa, dim=0), 0)
value1, j = torch.max(torch.sum(aa, dim=1), 0)
if value0 > value1:
x = A[:, i].conj() @ A
return max_abs * torch.linalg.vector_norm((x / torch.linalg.vector_norm(x)) @ A.H)
else:
x = A @ A[j].conj()
return max_abs * torch.linalg.vector_norm(A.H @ (x / torch.linalg.vector_norm(x)))
def _norm_lower_bound(A):
"""Cheap lower bound for the spectral norm of A."""
max_abs = A.norm(float("inf"))
return torch.where(max_abs > 0, _lb(A, max_abs), max_abs)
def _solve_triangular_right(X, A):
"""X @ inv(A)"""
orig_dtype = X.dtype
X = X.to(dtype=torch.float32)
A = A.to(dtype=torch.float32)
out = torch.linalg.solve_triangular(A, X.reshape(-1, X.size(-1)), upper=True, left=False).reshape_as(X)
return out.to(dtype=orig_dtype)
def _balance_Q(Q_in):
norms = torch.stack([q.norm(float("inf")) for q in Q_in])
geometric_mean = norms.prod() ** (1 / len(Q_in))
norms = geometric_mean / norms
for i, q in enumerate(Q_in):
q.mul_(norms[i])
def _precond_grad(Q, exprs, G):
"""Precondition gradient G with preconditioner Q."""
return torch.einsum(exprs[-1], *[q.conj() for q in Q], *Q, G)
def _calc_A_and_conjB(exprA, G, Q, V):
A = torch.einsum(exprA, *Q, G)
order = G.dim()
p = tuple(range(order))
conjB = torch.permute(V.conj(), p[1:] + p[:1])
for i, q in enumerate(Q):
conjB = conjB / q if q.dim() < 2 else _solve_triangular_right(conjB, q)
if i < order - 1:
conjB = torch.transpose(conjB, i, order - 1)
return A, conjB
def _q_terms(exprGs, A, conjB):
terms = []
for exprG in exprGs:
term1 = torch.einsum(exprG, A, A.conj())
term2 = torch.einsum(exprG, conjB.conj(), conjB)
terms.append((term1, term2))
return terms
|