File size: 21,537 Bytes
05d19fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
""" PyTorch Implementation of the Kron (PSGD) optimizer

This is a PSGD optimizer using a Kronecker-factored preconditioner.

This impl was adapted from https://github.com/evanatyourservice/kron_torch
by Evan Walters, licensed CC-BY-4.0.

Contributions to above also made by
* Lucas Nestler, added to his https://github.com/ClashLuke/HeavyBall implementation.
* Omead Pooladzandi https://github.com/opooladz

The above work drew from https://github.com/lixilinx/psgd_torch by Xi-Lin Li

This `timm` impl
* works with a wider variety of torch versions
* fixes some checkpoint save/restore (resume issues)
* adds decoupled weight-decay option
* has some refactoring, cleanup of args, default/group items
* warning about not having opt_einsum (unusable without)

"""
import logging
import string
import random
import warnings
from typing import Any, Callable, Dict, Optional, Tuple, Union

import numpy as np
import torch
try:
    # NOTE opt_einsum needed to avoid blowing up memory with einsum ops
    import opt_einsum
    import torch.backends.opt_einsum
    torch.backends.opt_einsum.enabled = True
    torch.backends.opt_einsum.strategy = "auto-hq"
    has_opt_einsum = True
except ImportError:
    has_opt_einsum = False

try:
    torch._dynamo.config.cache_size_limit = 1_000_000
    has_dynamo = True
except AttributeError:
    has_dynamo = False

from ._types import ParamsT

_logger = logging.getLogger(__name__)


def precond_update_prob_schedule(
        n: float,
        max_prob: float = 1.0,
        min_prob: float = 0.03,
        decay: float = 0.001,
        flat_start: float = 500,
) -> torch.Tensor:
    """Anneal preconditioner update probability during beginning of training.

    PSGD benefits from more preconditioner updates at the beginning of training,
    but once the preconditioner is learned the update probability can drop low.

    This schedule is an exponential anneal with a flat start. Default settings keep
    update probability at 1.0 for 200 steps then exponentially anneal down to
    `min_prob` by 4000 steps. Default settings work very well for most models and
    training regimes.
    """

    """Exponential anneal with flat start."""
    n = torch.tensor(n, dtype=torch.float32)
    prob = max_prob * torch.exp(-decay * (n - flat_start))
    prob.clamp_(min=min_prob, max=max_prob)

    return prob


class Kron(torch.optim.Optimizer):
    """Implements PSGD Kron from https://github.com/lixilinx/psgd_torch.

    Args:
        params: Iterable of parameters to optimize or dicts defining parameter groups.
        lr: Learning rate.
        momentum: Momentum parameter.
        weight_decay: Weight decay.
        preconditioner_update_probability: Probability of updating the preconditioner.
            If None, defaults to a schedule that anneals from 1.0 to 0.03 by 4000 steps.
        max_size_triangular: Max size for dim's preconditioner to be triangular.
        min_ndim_triangular: Minimum number of dimensions a layer needs to have triangular preconditioners.
        memory_save_mode: 'one_diag', 'smart_one_diag', or 'all_diag', None is default
            to set all preconditioners to be triangular, 'one_diag' sets the largest
            or last dim to be diagonal per layer, and 'all_diag' sets all preconditioners to be diagonal.
        momentum_into_precond_update: whether to send momentum into preconditioner
            update instead of raw gradients.
        mu_dtype: Dtype of the momentum accumulator.
        precond_dtype: Dtype of the preconditioner.
        decoupled_decay: AdamW style decoupled weight decay
        flatten: Flatten dimensions instead of fully relying on expressions for higher rank params
        flatten_start_dim: Start of flatten range, defaults to 2. Seems good tradeoff for ConvNets.
        flatten_end_dim: End of flatten range, defaults to -1.
        stochastic_weight_decay: Enable random modulation of weight decay
        deterministic: Deterministic behaviour across save / load (resume). FIXME slow, needs work
    """

    def __init__(
        self,
        params: ParamsT,
        lr: float = 0.001,
        momentum: float = 0.9,
        weight_decay: float = 0.0,
        preconditioner_update_probability: Optional[Union[Callable, float]] = None,
        max_size_triangular: int = 2048,
        min_ndim_triangular: int = 2,
        memory_save_mode: Optional[str] = None,
        momentum_into_precond_update: bool = True,
        precond_lr: float = 0.1,
        precond_init_scale: float = 1.0,
        mu_dtype: Optional[torch.dtype] = None,
        precond_dtype: Optional[torch.dtype] = None,
        decoupled_decay: bool = False,
        flatten: bool = False,
        flatten_start_dim: int = 2,
        flatten_end_dim: int = -1,
        stochastic_weight_decay: bool = False,
        deterministic: bool = False,
    ):
        if not has_opt_einsum:
            warnings.warn("It is highly recommended to have 'opt_einsum' installed for this optimizer.")

        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= momentum < 1.0:
            raise ValueError(f"Invalid beta parameter: {momentum}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")

        defaults = dict(
            lr=lr,
            momentum=momentum,
            weight_decay=weight_decay,
            preconditioner_update_probability=preconditioner_update_probability,
            max_size_triangular=max_size_triangular,
            min_ndim_triangular=min_ndim_triangular,
            memory_save_mode=memory_save_mode,
            momentum_into_precond_update=momentum_into_precond_update,
            precond_lr=precond_lr,
            precond_init_scale=precond_init_scale,
            mu_dtype=mu_dtype,
            precond_dtype=precond_dtype,
            decoupled_decay=decoupled_decay,
            flatten=flatten,
            flatten_start_dim=flatten_start_dim,
            flatten_end_dim=flatten_end_dim,
            stochastic_weight_decay=stochastic_weight_decay,
        )
        super(Kron, self).__init__(params, defaults)

        self._param_exprs = {}  # cache for einsum expr
        self._tiny = torch.finfo(torch.bfloat16).tiny
        self.rng = random.Random(1337)
        self.deterministic = deterministic

        # make compile optional (for bwd compat)
        if has_dynamo:
            self._calc_A_and_conjB = torch.compile(_calc_A_and_conjB, fullgraph=True, dynamic=False)
            self._q_terms = torch.compile(_q_terms, fullgraph=True, dynamic=False)
            self._precond_grad = torch.compile(_precond_grad, fullgraph=True, dynamic=False)
            self._balance_Q = torch.compile(_balance_Q, fullgraph=True, dynamic=False)
        else:
            self._calc_A_and_conjB = _calc_A_and_conjB
            self._q_terms = _q_terms
            self._precond_grad = _precond_grad
            self._balance_Q = _balance_Q

    def __getstate__(self):
        _dict = super().__getstate__()
        _dict["rng"] = self.rng
        return _dict

    def state_dict(self) -> Dict[str, Any]:
        # Get the optimizer's state dict
        optimizer_state = super().state_dict()

        # Add the generator state
        optimizer_state['rng_state'] = self.rng.getstate()
        return optimizer_state

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        # Extract and remove the RNG state from the state dict
        rng_states = {}
        if 'rng_state' in state_dict:
            rng_states['rng_state'] = state_dict.pop('rng_state')
            
        # Load the optimizer state
        super().load_state_dict(state_dict)
        state_dict.update(rng_states)  # add back

        # Restore the RNG state if it exists
        if 'rng_state' in rng_states:
            self.rng.setstate(rng_states['rng_state'])

    def __setstate__(self, state):
        super().__setstate__(state)
        self._param_exprs = {}

    @torch.no_grad()
    def step(self, closure=None):
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        total_momentum_size = 0
        total_momentum_mb = 0
        total_precond_size = 0
        total_precond_mb = 0

        for group in self.param_groups:
            mu_dtype = group.get("mu_dtype")
            precond_dtype = group.get("precond_dtype", torch.float32)
            momentum_into_precond_update = group.get("momentum_into_precond_update", True)
            update_prob = group.get("preconditioner_update_probability", None)

            for p in group["params"]:
                if p.grad is None:
                    continue

                grad = p.grad
                state = self.state[p]

                flattened = False
                if group['flatten']:
                    grad = safe_flatten(grad, group["flatten_start_dim"], group["flatten_end_dim"])
                    flattened = True

                if len(state) == 0:
                    state["step"] = 0
                    state["update_counter"] = 0
                    state["momentum_buffer"] = torch.zeros_like(grad, dtype=mu_dtype or grad.dtype)
                    # init Q and einsum expressions on first step
                    state["Q"], exprs = _init_Q_exprs(
                        grad,
                        group["precond_init_scale"],
                        group["max_size_triangular"],
                        group["min_ndim_triangular"],
                        group["memory_save_mode"],
                        dtype=precond_dtype,
                    )
                    self._param_exprs[p] = exprs

                    # Accumulate sizes for log
                    momentum_size = state["momentum_buffer"].numel()
                    momentum_mb = momentum_size * state["momentum_buffer"].element_size() / 2**20
                    total_momentum_size += momentum_size
                    total_momentum_mb += momentum_mb

                    precond_size = sum(q.numel() for q in state["Q"])
                    precond_mb = sum(q.numel() * q.element_size() for q in state["Q"]) / 2**20
                    total_precond_size += precond_size
                    total_precond_mb += precond_mb
                elif p not in self._param_exprs:
                    # init only the einsum expressions, called after state load, Q are loaded from state_dict
                    exprs = _init_Q_exprs(
                        grad,
                        group["precond_init_scale"],
                        group["max_size_triangular"],
                        group["min_ndim_triangular"],
                        group["memory_save_mode"],
                        dtype=precond_dtype,
                        init_q=False,
                    )
                    self._param_exprs[p] = exprs
                else:
                    # retrieve cached expressions
                    exprs = self._param_exprs[p]

                # update preconditioners all together deterministically
                if update_prob is None:
                    update_prob = precond_update_prob_schedule
                if callable(update_prob):
                    update_prob = update_prob(state["step"])
                state["update_counter"] += 1
                do_update = state["update_counter"] >= 1 / update_prob
                if do_update:
                    state["update_counter"] = 0

                state["step"] += 1

                # Update momentum buffer
                beta = group["momentum"]
                bias_correction = 1 - beta ** state["step"]
                momentum_buffer = state["momentum_buffer"]
                momentum_buffer.mul_(group["momentum"]).add_(grad, alpha=1 - group["momentum"])

                # Restore momentum dtype
                if mu_dtype is not None:
                    momentum_buffer.copy_(momentum_buffer.to(dtype=mu_dtype))
                debiased_momentum = (momentum_buffer / bias_correction).to(dtype=precond_dtype)

                # Balance preconditioners roughly every 100 updates
                balance = self.rng.random() < 0.01 and do_update
                if grad.dim() > 1 and balance:
                    self._balance_Q(state["Q"])

                # Update preconditioner
                if do_update:
                    exprA, exprGs, _ = exprs
                    Q = state["Q"]
                    if self.deterministic:
                        torch_rng = torch.Generator(device=debiased_momentum.device)
                        torch_rng.manual_seed(self.rng.randint(0, 2 ** 31))
                    else:
                        torch_rng = None
                    V = torch.randn(
                        debiased_momentum.shape,
                        generator=torch_rng,
                        dtype=precond_dtype,
                        device=debiased_momentum.device,
                    )
                    G = debiased_momentum if momentum_into_precond_update else grad

                    A, conjB = self._calc_A_and_conjB(exprA, G, Q, V)

                    terms = self._q_terms(exprGs, A, conjB)

                    for q, (term1, term2) in zip(Q, terms):
                        tmp = term1 - term2
                        tmp *= group["precond_lr"]
                        if q.dim() < 2:
                            tmp *= q
                            tmp /= (term1 + term2).norm(float("inf")) + self._tiny
                        else:
                            tmp = torch.triu(tmp)
                            tmp /= _norm_lower_bound(term1 + term2) + self._tiny
                            tmp @= q
                        q.sub_(tmp)

                # Precondition gradients
                pre_grad = self._precond_grad(
                    state["Q"],
                    exprs,
                    debiased_momentum,
                ).to(dtype=p.dtype)

                # RMS of pre_grad should be 1.0, so let's cap at 1.1
                pre_grad.mul_(torch.clamp(1.1 / (pre_grad.square().mean().sqrt_() + 1e-8), max=1.0))
                if flattened:
                    pre_grad = pre_grad.view(p.shape)

                # Apply weight decay
                weight_decay = group["weight_decay"]
                if weight_decay != 0:
                    if group["stochastic_weight_decay"]:
                        weight_decay = 2 * self.rng.random() * weight_decay

                    if group["decoupled_decay"]:
                        p.mul_(1. - group["lr"] * weight_decay)
                    else:
                        pre_grad.add_(p, alpha=weight_decay)

                # Update parameters
                p.add_(pre_grad, alpha=-group["lr"])

        if total_momentum_size > 0:
            _logger.info(f"PSGD Momentum buffer size: {total_momentum_size} elements, {total_momentum_mb:.2f} MB")
            _logger.info(f"PSGD Preconditioners size: {total_precond_size} elements, {total_precond_mb:.2f} MB")

        return loss


def safe_flatten(tensor, start_dim=0, end_dim=-1):
    ndim = tensor.ndim

    # Convert negative end_dim to positive and clip to end
    end_dim = min(end_dim if end_dim >= 0 else ndim + end_dim, ndim - 1)

    # If tensor has fewer dims than start_dim or start > end, return tensor as is
    if ndim <= start_dim or start_dim > end_dim:
        return tensor

    # Now safe to flatten
    return tensor.flatten(start_dim, end_dim)


def _init_Q_exprs(
        t,
        scale,
        max_size,
        min_ndim_triangular,
        memory_save_mode,
        dtype=None,
        init_q=True,
):
    """For a scalar or tensor t, we initialize its preconditioner Q and
    reusable einsum expressions for updating Q and preconditioning gradient.
    """
    letters = string.ascii_lowercase + string.ascii_uppercase

    dtype = dtype if dtype is not None else t.dtype
    shape = t.shape
    Q = []
    if len(shape) == 0:  # scalar
        if init_q:
            Q.append(scale * torch.ones_like(t, dtype=dtype))
        exprA = ",->"
        exprGs = [",->"]
        exprP = ",,->"
    else:  # tensor
        if len(shape) > 13:
            raise ValueError(f"Got tensor with dim {len(t.shape)}; Einstein runs out of letters!")

        scale = scale ** (1 / len(shape))

        if memory_save_mode is None:
            dim_diag = [False for _ in shape]
        elif memory_save_mode == "one_diag":
            rev_sorted_dims = np.argsort(shape)[::-1]
            dim_diag = [False for _ in shape]
            dim_diag[rev_sorted_dims[0]] = True
        elif memory_save_mode == "smart_one_diag":
            # addition proposed by Lucas Nestler
            rev_sorted_dims = np.argsort(shape)[::-1]
            sorted_shape = sorted(shape)
            dim_diag = [False for _ in shape]
            if len(shape) >= 2 and sorted_shape[-1] > sorted_shape[-2]:
                dim_diag[rev_sorted_dims[0]] = True
        elif memory_save_mode == "all_diag":
            dim_diag = [True for _ in shape]
        else:
            raise ValueError(
                f"Invalid memory_save_mode: {memory_save_mode}, must be one of [None, 'one_diag', 'all_diag']")

        piece1A, piece2A, piece3A = ([], "", "")
        exprGs = []
        piece1P, piece2P, piece3P, piece4P = ([], [], "", "")
        for i, (size, dim_d) in enumerate(zip(shape, dim_diag)):
            if (
                size == 1
                or size > max_size
                or len(shape) < min_ndim_triangular
                or dim_d
            ):
                # use diagonal matrix as preconditioner for this dim
                if init_q:
                    Q.append(scale * torch.ones(size, dtype=dtype, device=t.device))

                piece1A.append(letters[i])
                piece2A = piece2A + letters[i]
                piece3A = piece3A + letters[i]

                piece1 = "".join([letters[i + 13] if j == i else letters[j] for j in range(len(shape))])
                subscripts = piece1 + "," + piece1 + "->" + letters[i + 13]
                exprGs.append(subscripts)

                piece1P.append(letters[i + 13])
                piece2P.append(letters[i + 13])
                piece3P = piece3P + letters[i + 13]
                piece4P = piece4P + letters[i + 13]
            else:
                # use triangular matrix as preconditioner for this dim
                if init_q:
                    Q.append(scale * torch.eye(size, dtype=dtype, device=t.device))

                piece1A.append(letters[i] + letters[i + 13])
                piece2A = piece2A + letters[i + 13]
                piece3A = piece3A + letters[i]

                piece1 = "".join([letters[i + 13] if j == i else letters[j] for j in range(len(shape))])
                piece2 = "".join([letters[i + 26] if j == i else letters[j] for j in range(len(shape))])
                subscripts = piece1 + "," + piece2 + "->" + letters[i + 13] + letters[i + 26]
                exprGs.append(subscripts)

                a, b, c = (letters[i], letters[i + 13], letters[i + 26])
                piece1P.append(a + b)
                piece2P.append(a + c)
                piece3P = piece3P + c
                piece4P = piece4P + b

        exprA = ",".join(piece1A) + "," + piece2A + "->" + piece3A
        exprP = ",".join(piece1P) + "," + ",".join(piece2P) + "," + piece3P + "->" + piece4P

    exprGs = tuple(exprGs)
    if init_q:
        return [Q, (exprA, exprGs, exprP)]
    else:
        return exprA, exprGs, exprP


def _lb(A, max_abs):
    A = A / max_abs
    aa = torch.real(A * A.conj())
    value0, i = torch.max(torch.sum(aa, dim=0), 0)
    value1, j = torch.max(torch.sum(aa, dim=1), 0)
    if value0 > value1:
        x = A[:, i].conj() @ A
        return max_abs * torch.linalg.vector_norm((x / torch.linalg.vector_norm(x)) @ A.H)
    else:
        x = A @ A[j].conj()
        return max_abs * torch.linalg.vector_norm(A.H @ (x / torch.linalg.vector_norm(x)))


def _norm_lower_bound(A):
    """Cheap lower bound for the spectral norm of A."""
    max_abs = A.norm(float("inf"))
    return torch.where(max_abs > 0, _lb(A, max_abs), max_abs)


def _solve_triangular_right(X, A):
    """X @ inv(A)"""
    orig_dtype = X.dtype
    X = X.to(dtype=torch.float32)
    A = A.to(dtype=torch.float32)
    out = torch.linalg.solve_triangular(A, X.reshape(-1, X.size(-1)), upper=True, left=False).reshape_as(X)
    return out.to(dtype=orig_dtype)


def _balance_Q(Q_in):
    norms = torch.stack([q.norm(float("inf")) for q in Q_in])
    geometric_mean = norms.prod() ** (1 / len(Q_in))
    norms = geometric_mean / norms
    for i, q in enumerate(Q_in):
        q.mul_(norms[i])


def _precond_grad(Q, exprs, G):
    """Precondition gradient G with preconditioner Q."""
    return torch.einsum(exprs[-1], *[q.conj() for q in Q], *Q, G)


def _calc_A_and_conjB(exprA, G, Q, V):
    A = torch.einsum(exprA, *Q, G)
    order = G.dim()
    p = tuple(range(order))
    conjB = torch.permute(V.conj(), p[1:] + p[:1])
    for i, q in enumerate(Q):
        conjB = conjB / q if q.dim() < 2 else _solve_triangular_right(conjB, q)
        if i < order - 1:
            conjB = torch.transpose(conjB, i, order - 1)
    return A, conjB


def _q_terms(exprGs, A, conjB):
    terms = []
    for exprG in exprGs:
        term1 = torch.einsum(exprG, A, A.conj())
        term2 = torch.einsum(exprG, conjB.conj(), conjB)
        terms.append((term1, term2))
    return terms