File size: 4,175 Bytes
860b549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import pytest
import torch
import torch.nn as nn

from timm.layers import create_act_layer, set_layer_config, get_act_layer, get_act_fn, Attention2d, MultiQueryAttentionV2

import importlib
import os

torch_backend = os.environ.get('TORCH_BACKEND')
if torch_backend is not None:
    importlib.import_module(torch_backend)
torch_device = os.environ.get('TORCH_DEVICE', 'cpu')

class MLP(nn.Module):
    def __init__(self, act_layer="relu", inplace=True):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(1000, 100)
        self.act = create_act_layer(act_layer, inplace=inplace)
        self.fc2 = nn.Linear(100, 10)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


def _run_act_layer_grad(act_type, inplace=True):
    x = torch.rand(10, 1000) * 10
    m = MLP(act_layer=act_type, inplace=inplace)

    def _run(x, act_layer=''):
        if act_layer:
            # replace act layer if set
            m.act = create_act_layer(act_layer, inplace=inplace)
        out = m(x)
        l = (out - 0).pow(2).sum()
        return l

    x = x.to(device=torch_device)
    m.to(device=torch_device)

    out_me = _run(x)

    with set_layer_config(scriptable=True):
        out_jit = _run(x, act_type)

    assert torch.isclose(out_jit, out_me)

    with set_layer_config(no_jit=True):
        out_basic = _run(x, act_type)

    assert torch.isclose(out_basic, out_jit)


def test_swish_grad():
    for _ in range(100):
        _run_act_layer_grad('swish')


def test_mish_grad():
    for _ in range(100):
        _run_act_layer_grad('mish')


def test_hard_sigmoid_grad():
    for _ in range(100):
        _run_act_layer_grad('hard_sigmoid', inplace=None)


def test_hard_swish_grad():
    for _ in range(100):
        _run_act_layer_grad('hard_swish')


def test_hard_mish_grad():
    for _ in range(100):
        _run_act_layer_grad('hard_mish')

def test_get_act_layer_empty_string():
    # Empty string should return None
    assert get_act_layer('') is None


def test_create_act_layer_inplace_error():
    class NoInplaceAct(nn.Module):
        def __init__(self):
            super().__init__()
        def forward(self, x):
            return x
    
    # Should recover when inplace arg causes TypeError
    layer = create_act_layer(NoInplaceAct, inplace=True)
    assert isinstance(layer, NoInplaceAct)


def test_create_act_layer_edge_cases():
    # Test None input
    assert create_act_layer(None) is None
    
    # Test TypeError handling for inplace
    class CustomAct(nn.Module):
        def __init__(self, **kwargs):
            super().__init__()
        def forward(self, x):
            return x
            
    result = create_act_layer(CustomAct, inplace=True)
    assert isinstance(result, CustomAct)


def test_get_act_fn_callable():
    def custom_act(x): 
        return x
    assert get_act_fn(custom_act) is custom_act


def test_get_act_fn_none():
    assert get_act_fn(None) is None
    assert get_act_fn('') is None


@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("dim_out", [128, 256])
@pytest.mark.parametrize("use_m", [True, False])
def test_mqa_v2(dim, dim_out, use_m):
    mqa = MultiQueryAttentionV2(dim, dim_out)
    
    x = torch.randn(1, dim, 32, 48)
    if use_m:
        m = torch.randn(1, dim, 16, 24)
    else:
        m = None
        
    y = mqa(x, m=m)
    
    assert (y.shape) == (1, dim_out, 32, 48)


@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("expand_first", [True, False])
@pytest.mark.parametrize("head_first", [True, False])
@pytest.mark.parametrize("attn_mask", [True, False])
def test_attn2d(bias, expand_first, head_first, attn_mask):
    x = torch.randn(1, 128, 32, 48)
    attn = Attention2d(
        128, 128, num_heads=4, bias=bias, expand_first=expand_first, head_first=head_first
    )
    
    if attn_mask:
        mask = torch.randint(0, 1, size=(32 * 48, 32 * 48), dtype=torch.float32)
    else:
        mask = None
    
    o1 = attn(x, mask)
    attn.fused_attn = False
    o2 = attn(x, mask)
    
    assert torch.allclose(o1, o2, atol=1e-5), f"{torch.abs(o1 - o2).max()}"