File size: 20,545 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
""" ViTamin

Paper: Designing Scalable Vison Models in the Vision-Language Era
A family of model weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf

@inproceedings{chen2024vitamin,
  title={ViTamin: Designing Scalable Vision Models in the Vision-language Era},
  author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, Alan and Chen, Liang-Chieh},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2024}
}

Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin

Modifications and timm support by Jieneng Chen 2024

Reference:
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer_hybrid.py
"""

import math
from dataclasses import dataclass, field
from functools import partial
from typing import Optional, Union, Tuple

import torch
import torch.nn as nn

from timm.data import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import create_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, \
    make_divisible, DropPath, HybridEmbed
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import register_model, generate_default_cfgs
from .vision_transformer import VisionTransformer, checkpoint_filter_fn


@dataclass
class VitConvCfg:
    expand_ratio: float = 4.0
    expand_output: bool = True  # calculate expansion channels from output (vs input chs)
    kernel_size: int = 3
    group_size: int = 1  # 1 == depthwise
    pre_norm_act: bool = False  # activation after pre-norm
    stride_mode: str = 'dw'  # stride done via one of 'pool', '1x1', 'dw'
    pool_type: str = 'avg2'
    downsample_pool_type: str = 'avg2'
    act_layer: str = 'gelu' # stem & stage 1234
    norm_layer: str = ''
    norm_eps: float = 1e-5
    down_shortcut: Optional[bool] = True
    mlp: str = 'mlp'


@dataclass
class VitCfg:
    embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768)
    depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2)
    stem_width: int = 64
    conv_cfg: VitConvCfg = field(default_factory=VitConvCfg)
    head_type: str = ""


def _init_conv(module, name, scheme=''):
    if isinstance(module, nn.Conv2d):
        fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
        fan_out //= module.groups
        nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
        if module.bias is not None:
            nn.init.zeros_(module.bias)


class Stem(nn.Module):
    def __init__(
            self,
            in_chs: int,
            out_chs: int,
            act_layer: str = 'gelu',
            norm_layer: str = 'layernorm2d',
            norm_eps: float = 1e-6,
            bias: bool = True,
    ):
        super().__init__()
        norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
        self.out_chs = out_chs

        self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias)
        self.norm1 = norm_act_layer(out_chs)
        self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias)

        named_apply(_init_conv, self)

    def forward(self, x):
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.conv2(x)
        return x


class Downsample2d(nn.Module):
    def __init__(
            self,
            dim: int,
            dim_out: int,
            pool_type: str = 'avg2',
            bias: bool = True,
    ):
        super().__init__()
        self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)

        if dim != dim_out:
            self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv
        else:
            self.expand = nn.Identity()

    def forward(self, x):
        x = self.pool(x)  # spatial downsample
        x = self.expand(x)  # expand chs
        return x


class StridedConv(nn.Module):
    """ downsample 2d as well
    """
    def __init__(
            self, 
            kernel_size=3, 
            stride=2, 
            padding=1,
            in_chans=3, 
            embed_dim=768
    ):
        super().__init__()
        norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6)

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
        self.norm = norm_layer(in_chans) # affine over C

    def forward(self, x):
        x = self.norm(x) 
        x = self.proj(x)
        return x


class MbConvLNBlock(nn.Module):
    """ Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
    """
    def __init__(
            self,
            in_chs: int,
            out_chs: int,
            stride: int = 1,
            drop_path: float = 0.,
            kernel_size: int = 3,
            norm_layer: str = 'layernorm2d',
            norm_eps: float = 1e-6,
            act_layer: str = 'gelu',
            expand_ratio: float = 4.0,
    ):
        super(MbConvLNBlock, self).__init__()
        self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
        mid_chs = make_divisible(out_chs * expand_ratio)
        prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)

        if stride == 2: 
            self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True)
        elif in_chs != out_chs:
            self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
        else:
            self.shortcut = nn.Identity()

        self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
        self.down = nn.Identity()
        self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
        self.act1 = create_act_layer(act_layer, inplace=True)
        self.conv2_kxk = create_conv2d(
            mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True)
        self.act2 = create_act_layer(act_layer, inplace=True)
        self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()


    def init_weights(self, scheme=''):
        named_apply(partial(_init_conv, scheme=scheme), self)

    def forward(self, x):
        shortcut = self.shortcut(x)

        x = self.pre_norm(x)
        x = self.down(x) # nn.Identity() 

        # 1x1 expansion conv & act
        x = self.conv1_1x1(x)
        x = self.act1(x) 

        # (strided) depthwise 3x3 conv & act
        x = self.conv2_kxk(x)
        x = self.act2(x)

        # 1x1 linear projection to output width
        x = self.conv3_1x1(x)
        x = self.drop_path(x) + shortcut

        return x


class MbConvStages(nn.Module):
    """ MobileConv for stage 1 and stage 2 of ViTamin
    """
    def __init__(
            self,
            cfg: VitCfg,
            img_size: Union[int, Tuple[int, int]] = 224, # place holder
            in_chans: int = 3,
    ):
        super().__init__()
        self.grad_checkpointing = False

        self.stem = Stem(
            in_chs=in_chans,
            out_chs=cfg.stem_width,
        )

        stages = []
        self.num_stages = len(cfg.embed_dim)
        for s, dim in enumerate(cfg.embed_dim[:2]): # stage
            stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width
            blocks = [
                MbConvLNBlock(
                    in_chs = stage_in_chs if d==0 else dim,
                    out_chs = dim,
                    stride = 2 if d == 0 else 1,
                )
                for d in range(cfg.depths[s])
            ]
            stages += [nn.Sequential(*blocks)]
        self.stages = nn.Sequential(*stages)

        self.pool = StridedConv(
            stride=2,
            in_chans=cfg.embed_dim[1],
            embed_dim=cfg.embed_dim[2]
        )

    def forward(self, x):
        x = self.stem(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.stages, x)
        else:
            x = self.stages(x)
        x = self.pool(x)
        return x


class GeGluMlp(nn.Module):
    def __init__(
            self, 
            in_features, 
            hidden_features,
            act_layer = 'gelu',
            bias = True,
            drop = 0.0,
    ):
        super().__init__()
        norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)

        self.norm = norm_layer(in_features)
        self.w0 = nn.Linear(in_features, hidden_features, bias=bias)
        self.act = create_act_layer(act_layer)
        self.w1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.w2 = nn.Linear(hidden_features, in_features, bias=bias)

    def forward(self, x):
        x = self.norm(x)
        x = self.act(self.w0(x)) * self.w1(x)
        x = self.w2(x)
        return x


def _create_vitamin(variant, pretrained=False, embed_cfg=None, **kwargs):
    out_indices = kwargs.pop('out_indices', 3)
    assert embed_cfg is not None
    backbone = MbConvStages(cfg=embed_cfg, in_chans=kwargs.get('in_chans', 3))
    kwargs['embed_layer'] = partial(HybridEmbed, backbone=backbone, proj=False)
    kwargs.setdefault('patch_size', 1)  # default patch size for hybrid models if not set

    return build_model_with_cfg(
        VisionTransformer,
        variant,
        pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD,
        'first_conv': 'patch_embed.backbone.stem.conv1',
        'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'vitamin_small_224.datacomp1b_clip_ltt': _cfg(
        hf_hub_id='jienengchen/ViTamin-S-LTT', num_classes=384),
    'vitamin_small_224.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-S', num_classes=384),
    'vitamin_base_224.datacomp1b_clip_ltt': _cfg(
        hf_hub_id='jienengchen/ViTamin-B-LTT', num_classes=768),
    'vitamin_base_224.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-B', num_classes=768),
    'vitamin_large_224.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L-224px', num_classes=768),
    'vitamin_large_256.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L-256px', num_classes=768,
        input_size=(3, 256, 256), crop_pct=1.0),
    'vitamin_large_336.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L-336px', num_classes=768,
        input_size=(3, 336, 336), crop_pct=1.0),
    'vitamin_large_384.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L-384px', num_classes=768,
        input_size=(3, 384, 384), crop_pct=1.0),
    'vitamin_large2_224.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L2-224px', num_classes=1024),
    'vitamin_large2_256.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L2-256px', num_classes=1024,
        input_size=(3, 256, 256), crop_pct=1.0),
    'vitamin_large2_336.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L2-336px', num_classes=1024,
        input_size=(3, 336, 336), crop_pct=1.0),
    'vitamin_large2_384.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-L2-384px', num_classes=1024,
        input_size=(3, 384, 384), crop_pct=1.0),
    'vitamin_xlarge_256.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-XL-256px', num_classes=1152,
        input_size=(3, 256, 256), crop_pct=1.0),
    'vitamin_xlarge_336.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-XL-336px', num_classes=1152,
        input_size=(3, 336, 336), crop_pct=1.0),
    'vitamin_xlarge_384.datacomp1b_clip': _cfg(
        hf_hub_id='jienengchen/ViTamin-XL-384px', num_classes=1152,
        input_size=(3, 384, 384), crop_pct=1.0),
})


@register_model
def vitamin_small_224(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(64, 128, 384),
        depths=(2, 4, 1),
        stem_width=64,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg
    )
    model = _create_vitamin('vitamin_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_base_224(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(128, 256, 768),
        depths=(2, 4, 1),
        stem_width=128,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large_224(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg,
    )
    model = _create_vitamin('vitamin_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_large_256', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg
    )
    model = _create_vitamin('vitamin_large_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_large_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large2_224(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg,
    )
    model = _create_vitamin('vitamin_large2_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large2_256(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_large2_256', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large2_336(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg
    )
    model = _create_vitamin('vitamin_large2_336', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_large2_384(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(160, 320, 1024),
        depths=(2, 4, 1),
        stem_width=160,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_large2_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg=VitCfg(
        embed_dim=(192, 384, 1152),
        depths=(2, 4, 1),
        stem_width=192,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
    model = _create_vitamin(
        'vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(192, 384, 1152),
        depths=(2, 4, 1),
        stem_width=192,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
    embed_cfg = VitCfg(
        embed_dim=(192, 384, 1152),
        depths=(2, 4, 1),
        stem_width=192,
        conv_cfg=VitConvCfg(
            norm_layer='layernorm2d',
            norm_eps=1e-6,
        ),
        head_type='1d',
    )
    model_args = dict(
        img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
        class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
    model = _create_vitamin('vitamin_xlarge_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model