File size: 20,545 Bytes
b1485f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
""" ViTamin
Paper: Designing Scalable Vison Models in the Vision-Language Era
A family of model weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf
@inproceedings{chen2024vitamin,
title={ViTamin: Designing Scalable Vision Models in the Vision-language Era},
author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, Alan and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin
Modifications and timm support by Jieneng Chen 2024
Reference:
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer_hybrid.py
"""
import math
from dataclasses import dataclass, field
from functools import partial
from typing import Optional, Union, Tuple
import torch
import torch.nn as nn
from timm.data import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import create_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, \
make_divisible, DropPath, HybridEmbed
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import register_model, generate_default_cfgs
from .vision_transformer import VisionTransformer, checkpoint_filter_fn
@dataclass
class VitConvCfg:
expand_ratio: float = 4.0
expand_output: bool = True # calculate expansion channels from output (vs input chs)
kernel_size: int = 3
group_size: int = 1 # 1 == depthwise
pre_norm_act: bool = False # activation after pre-norm
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
pool_type: str = 'avg2'
downsample_pool_type: str = 'avg2'
act_layer: str = 'gelu' # stem & stage 1234
norm_layer: str = ''
norm_eps: float = 1e-5
down_shortcut: Optional[bool] = True
mlp: str = 'mlp'
@dataclass
class VitCfg:
embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768)
depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2)
stem_width: int = 64
conv_cfg: VitConvCfg = field(default_factory=VitConvCfg)
head_type: str = ""
def _init_conv(module, name, scheme=''):
if isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
nn.init.zeros_(module.bias)
class Stem(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
act_layer: str = 'gelu',
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
bias: bool = True,
):
super().__init__()
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
self.out_chs = out_chs
self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias)
self.norm1 = norm_act_layer(out_chs)
self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias)
named_apply(_init_conv, self)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.conv2(x)
return x
class Downsample2d(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
pool_type: str = 'avg2',
bias: bool = True,
):
super().__init__()
self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)
if dim != dim_out:
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv
else:
self.expand = nn.Identity()
def forward(self, x):
x = self.pool(x) # spatial downsample
x = self.expand(x) # expand chs
return x
class StridedConv(nn.Module):
""" downsample 2d as well
"""
def __init__(
self,
kernel_size=3,
stride=2,
padding=1,
in_chans=3,
embed_dim=768
):
super().__init__()
norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
self.norm = norm_layer(in_chans) # affine over C
def forward(self, x):
x = self.norm(x)
x = self.proj(x)
return x
class MbConvLNBlock(nn.Module):
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
"""
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
drop_path: float = 0.,
kernel_size: int = 3,
norm_layer: str = 'layernorm2d',
norm_eps: float = 1e-6,
act_layer: str = 'gelu',
expand_ratio: float = 4.0,
):
super(MbConvLNBlock, self).__init__()
self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs
mid_chs = make_divisible(out_chs * expand_ratio)
prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
if stride == 2:
self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True)
elif in_chs != out_chs:
self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True)
else:
self.shortcut = nn.Identity()
self.pre_norm = prenorm_act_layer(in_chs, apply_act=False)
self.down = nn.Identity()
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True)
self.act1 = create_act_layer(act_layer, inplace=True)
self.conv2_kxk = create_conv2d(
mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True)
self.act2 = create_act_layer(act_layer, inplace=True)
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self, scheme=''):
named_apply(partial(_init_conv, scheme=scheme), self)
def forward(self, x):
shortcut = self.shortcut(x)
x = self.pre_norm(x)
x = self.down(x) # nn.Identity()
# 1x1 expansion conv & act
x = self.conv1_1x1(x)
x = self.act1(x)
# (strided) depthwise 3x3 conv & act
x = self.conv2_kxk(x)
x = self.act2(x)
# 1x1 linear projection to output width
x = self.conv3_1x1(x)
x = self.drop_path(x) + shortcut
return x
class MbConvStages(nn.Module):
""" MobileConv for stage 1 and stage 2 of ViTamin
"""
def __init__(
self,
cfg: VitCfg,
img_size: Union[int, Tuple[int, int]] = 224, # place holder
in_chans: int = 3,
):
super().__init__()
self.grad_checkpointing = False
self.stem = Stem(
in_chs=in_chans,
out_chs=cfg.stem_width,
)
stages = []
self.num_stages = len(cfg.embed_dim)
for s, dim in enumerate(cfg.embed_dim[:2]): # stage
stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width
blocks = [
MbConvLNBlock(
in_chs = stage_in_chs if d==0 else dim,
out_chs = dim,
stride = 2 if d == 0 else 1,
)
for d in range(cfg.depths[s])
]
stages += [nn.Sequential(*blocks)]
self.stages = nn.Sequential(*stages)
self.pool = StridedConv(
stride=2,
in_chans=cfg.embed_dim[1],
embed_dim=cfg.embed_dim[2]
)
def forward(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x)
else:
x = self.stages(x)
x = self.pool(x)
return x
class GeGluMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features,
act_layer = 'gelu',
bias = True,
drop = 0.0,
):
super().__init__()
norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)
self.norm = norm_layer(in_features)
self.w0 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = create_act_layer(act_layer)
self.w1 = nn.Linear(in_features, hidden_features, bias=bias)
self.w2 = nn.Linear(hidden_features, in_features, bias=bias)
def forward(self, x):
x = self.norm(x)
x = self.act(self.w0(x)) * self.w1(x)
x = self.w2(x)
return x
def _create_vitamin(variant, pretrained=False, embed_cfg=None, **kwargs):
out_indices = kwargs.pop('out_indices', 3)
assert embed_cfg is not None
backbone = MbConvStages(cfg=embed_cfg, in_chans=kwargs.get('in_chans', 3))
kwargs['embed_layer'] = partial(HybridEmbed, backbone=backbone, proj=False)
kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set
return build_model_with_cfg(
VisionTransformer,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD,
'first_conv': 'patch_embed.backbone.stem.conv1',
'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'vitamin_small_224.datacomp1b_clip_ltt': _cfg(
hf_hub_id='jienengchen/ViTamin-S-LTT', num_classes=384),
'vitamin_small_224.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-S', num_classes=384),
'vitamin_base_224.datacomp1b_clip_ltt': _cfg(
hf_hub_id='jienengchen/ViTamin-B-LTT', num_classes=768),
'vitamin_base_224.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-B', num_classes=768),
'vitamin_large_224.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L-224px', num_classes=768),
'vitamin_large_256.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L-256px', num_classes=768,
input_size=(3, 256, 256), crop_pct=1.0),
'vitamin_large_336.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L-336px', num_classes=768,
input_size=(3, 336, 336), crop_pct=1.0),
'vitamin_large_384.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L-384px', num_classes=768,
input_size=(3, 384, 384), crop_pct=1.0),
'vitamin_large2_224.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L2-224px', num_classes=1024),
'vitamin_large2_256.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L2-256px', num_classes=1024,
input_size=(3, 256, 256), crop_pct=1.0),
'vitamin_large2_336.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L2-336px', num_classes=1024,
input_size=(3, 336, 336), crop_pct=1.0),
'vitamin_large2_384.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-L2-384px', num_classes=1024,
input_size=(3, 384, 384), crop_pct=1.0),
'vitamin_xlarge_256.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-XL-256px', num_classes=1152,
input_size=(3, 256, 256), crop_pct=1.0),
'vitamin_xlarge_336.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-XL-336px', num_classes=1152,
input_size=(3, 336, 336), crop_pct=1.0),
'vitamin_xlarge_384.datacomp1b_clip': _cfg(
hf_hub_id='jienengchen/ViTamin-XL-384px', num_classes=1152,
input_size=(3, 384, 384), crop_pct=1.0),
})
@register_model
def vitamin_small_224(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(64, 128, 384),
depths=(2, 4, 1),
stem_width=64,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg
)
model = _create_vitamin('vitamin_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_base_224(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(128, 256, 768),
depths=(2, 4, 1),
stem_width=128,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large_224(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg,
)
model = _create_vitamin('vitamin_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_large_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg
)
model = _create_vitamin('vitamin_large_336', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_large_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large2_224(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg,
)
model = _create_vitamin('vitamin_large2_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large2_256(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_large2_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large2_336(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg
)
model = _create_vitamin('vitamin_large2_336', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_large2_384(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(160, 320, 1024),
depths=(2, 4, 1),
stem_width=160,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_large2_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg=VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
model = _create_vitamin(
'vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer:
embed_cfg = VitCfg(
embed_dim=(192, 384, 1152),
depths=(2, 4, 1),
stem_width=192,
conv_cfg=VitConvCfg(
norm_layer='layernorm2d',
norm_eps=1e-6,
),
head_type='1d',
)
model_args = dict(
img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2.,
class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg)
model = _create_vitamin('vitamin_xlarge_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model |