File size: 15,192 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
InceptionNeXt paper: https://arxiv.org/abs/2303.16900
Original implementation & weights from: https://github.com/sail-sg/inceptionnext
"""

from functools import partial
from typing import Optional

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import trunc_normal_, DropPath, to_2tuple, get_padding, SelectAdaptivePool2d
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs

__all__ = ['MetaNeXt']


class InceptionDWConv2d(nn.Module):
    """ Inception depthwise convolution
    """

    def __init__(
            self,
            in_chs,
            square_kernel_size=3,
            band_kernel_size=11,
            branch_ratio=0.125,
            dilation=1,
    ):
        super().__init__()

        gc = int(in_chs * branch_ratio)  # channel numbers of a convolution branch
        square_padding = get_padding(square_kernel_size, dilation=dilation)
        band_padding = get_padding(band_kernel_size, dilation=dilation)
        self.dwconv_hw = nn.Conv2d(
            gc, gc, square_kernel_size,
            padding=square_padding, dilation=dilation, groups=gc)
        self.dwconv_w = nn.Conv2d(
            gc, gc, (1, band_kernel_size),
            padding=(0, band_padding), dilation=(1, dilation), groups=gc)
        self.dwconv_h = nn.Conv2d(
            gc, gc, (band_kernel_size, 1),
            padding=(band_padding, 0), dilation=(dilation, 1), groups=gc)
        self.split_indexes = (in_chs - 3 * gc, gc, gc, gc)

    def forward(self, x):
        x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
        return torch.cat((
            x_id,
            self.dwconv_hw(x_hw),
            self.dwconv_w(x_w),
            self.dwconv_h(x_h)
            ), dim=1,
        )


class ConvMlp(nn.Module):
    """ MLP using 1x1 convs that keeps spatial dims
    copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py
    """

    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.ReLU,
            norm_layer=None,
            bias=True,
            drop=0.,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)

        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
        self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
        self.act = act_layer()
        self.drop = nn.Dropout(drop)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        return x


class MlpClassifierHead(nn.Module):
    """ MLP classification head
    """

    def __init__(
            self,
            in_features,
            num_classes=1000,
            pool_type='avg',
            mlp_ratio=3,
            act_layer=nn.GELU,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            drop=0.,
            bias=True
    ):
        super().__init__()
        self.use_conv = False
        self.in_features = in_features
        self.num_features = hidden_features = int(mlp_ratio * in_features)

        assert pool_type, 'Cannot disable pooling'
        self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True)

        self.fc1 = nn.Linear(in_features * self.global_pool.feat_mult(), hidden_features, bias=bias)
        self.act = act_layer()
        self.norm = norm_layer(hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
        self.drop = nn.Dropout(drop)

    def reset(self, num_classes: int, pool_type: Optional[str] = None):
        if pool_type is not None:
            assert pool_type, 'Cannot disable pooling'
            self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True)

        self.fc2 = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        x = self.fc1(x)
        x = self.act(x)
        x = self.norm(x)
        x = self.drop(x)
        return x if pre_logits else self.fc2(x)


class MetaNeXtBlock(nn.Module):
    """ MetaNeXtBlock Block
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
            self,
            dim,
            dilation=1,
            token_mixer=InceptionDWConv2d,
            norm_layer=nn.BatchNorm2d,
            mlp_layer=ConvMlp,
            mlp_ratio=4,
            act_layer=nn.GELU,
            ls_init_value=1e-6,
            drop_path=0.,

    ):
        super().__init__()
        self.token_mixer = token_mixer(dim, dilation=dilation)
        self.norm = norm_layer(dim)
        self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.token_mixer(x)
        x = self.norm(x)
        x = self.mlp(x)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))
        x = self.drop_path(x) + shortcut
        return x


class MetaNeXtStage(nn.Module):
    def __init__(
            self,
            in_chs,
            out_chs,
            stride=2,
            depth=2,
            dilation=(1, 1),
            drop_path_rates=None,
            ls_init_value=1.0,
            token_mixer=InceptionDWConv2d,
            act_layer=nn.GELU,
            norm_layer=None,
            mlp_ratio=4,
    ):
        super().__init__()
        self.grad_checkpointing = False
        if stride > 1 or dilation[0] != dilation[1]:
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                nn.Conv2d(
                    in_chs,
                    out_chs,
                    kernel_size=2,
                    stride=stride,
                    dilation=dilation[0],
                ),
            )
        else:
            self.downsample = nn.Identity()

        drop_path_rates = drop_path_rates or [0.] * depth
        stage_blocks = []
        for i in range(depth):
            stage_blocks.append(MetaNeXtBlock(
                dim=out_chs,
                dilation=dilation[1],
                drop_path=drop_path_rates[i],
                ls_init_value=ls_init_value,
                token_mixer=token_mixer,
                act_layer=act_layer,
                norm_layer=norm_layer,
                mlp_ratio=mlp_ratio,
            ))
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class MetaNeXt(nn.Module):
    r""" MetaNeXt
        A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/abs/2303.16900

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)
        dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)
        token_mixers: Token mixer function. Default: nn.Identity
        norm_layer: Normalization layer. Default: nn.BatchNorm2d
        act_layer: Activation function for MLP. Default: nn.GELU
        mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)
        drop_rate (float): Head dropout rate
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
            self,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            output_stride=32,
            depths=(3, 3, 9, 3),
            dims=(96, 192, 384, 768),
            token_mixers=InceptionDWConv2d,
            norm_layer=nn.BatchNorm2d,
            act_layer=nn.GELU,
            mlp_ratios=(4, 4, 4, 3),
            drop_rate=0.,
            drop_path_rate=0.,
            ls_init_value=1e-6,
    ):
        super().__init__()

        num_stage = len(depths)
        if not isinstance(token_mixers, (list, tuple)):
            token_mixers = [token_mixers] * num_stage
        if not isinstance(mlp_ratios, (list, tuple)):
            mlp_ratios = [mlp_ratios] * num_stage
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.drop_rate = drop_rate
        self.feature_info = []

        self.stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            norm_layer(dims[0])
        )

        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        prev_chs = dims[0]
        curr_stride = 4
        dilation = 1
        # feature resolution stages, each consisting of multiple residual blocks
        self.stages = nn.Sequential()
        for i in range(num_stage):
            stride = 2 if curr_stride == 2 or i > 0 else 1
            if curr_stride >= output_stride and stride > 1:
                dilation *= stride
                stride = 1
            curr_stride *= stride
            first_dilation = 1 if dilation in (1, 2) else 2
            out_chs = dims[i]
            self.stages.append(MetaNeXtStage(
                prev_chs,
                out_chs,
                stride=stride if i > 0 else 1,
                dilation=(first_dilation, dilation),
                depth=depths[i],
                drop_path_rates=dp_rates[i],
                ls_init_value=ls_init_value,
                act_layer=act_layer,
                token_mixer=token_mixers[i],
                norm_layer=norm_layer,
                mlp_ratio=mlp_ratios[i],
            ))
            prev_chs = out_chs
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
        self.num_features = prev_chs
        self.head = MlpClassifierHead(self.num_features, num_classes, pool_type=self.global_pool, drop=drop_rate)
        self.head_hidden_size = self.head.num_features
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.downsample', (0,)),  # blocks
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
            ]
        )

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head.fc2

    def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
        self.num_classes = num_classes
        self.head.reset(num_classes, global_pool)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def no_weight_decay(self):
        return set()

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc2',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'inception_next_atto.sail_in1k': _cfg(
        hf_hub_id='timm/',
        # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_atto.pth',
    ),
    'inception_next_tiny.sail_in1k': _cfg(
        hf_hub_id='timm/',
        # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
    ),
    'inception_next_small.sail_in1k': _cfg(
        hf_hub_id='timm/',
        # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
    ),
    'inception_next_base.sail_in1k': _cfg(
        hf_hub_id='timm/',
        # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
        crop_pct=0.95,
    ),
    'inception_next_base.sail_in1k_384': _cfg(
        hf_hub_id='timm/',
        # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0,
    ),
})


def _create_inception_next(variant, pretrained=False, **kwargs):
    model = build_model_with_cfg(
        MetaNeXt, variant, pretrained,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs,
    )
    return model


@register_model
def inception_next_atto(pretrained=False, **kwargs):
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(40, 80, 160, 320),
        token_mixers=partial(InceptionDWConv2d, band_kernel_size=9, branch_ratio=0.25)
    )
    return _create_inception_next('inception_next_atto', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def inception_next_tiny(pretrained=False, **kwargs):
    model_args = dict(
        depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),
        token_mixers=InceptionDWConv2d,
    )
    return _create_inception_next('inception_next_tiny', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def inception_next_small(pretrained=False, **kwargs):
    model_args = dict(
        depths=(3, 3, 27, 3), dims=(96, 192, 384, 768),
        token_mixers=InceptionDWConv2d,
    )
    return _create_inception_next('inception_next_small', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def inception_next_base(pretrained=False, **kwargs):
    model_args = dict(
        depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024),
        token_mixers=InceptionDWConv2d,
    )
    return _create_inception_next('inception_next_base', pretrained=pretrained, **dict(model_args, **kwargs))