File size: 8,940 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# (Tensorflow) EfficientNet CondConv

**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scale network width, depth, and resolution in a principled way.

The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.

The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block).

This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions.

The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu).

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `tf_efficientnet_cc_b0_4e`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/abs-1904-04971,
  author    = {Brandon Yang and
               Gabriel Bender and
               Quoc V. Le and
               Jiquan Ngiam},
  title     = {Soft Conditional Computation},
  journal   = {CoRR},
  volume    = {abs/1904.04971},
  year      = {2019},
  url       = {http://arxiv.org/abs/1904.04971},
  archivePrefix = {arXiv},
  eprint    = {1904.04971},
  timestamp = {Thu, 25 Apr 2019 13:55:01 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: TF EfficientNet CondConv
  Paper:
    Title: 'CondConv: Conditionally Parameterized Convolutions for Efficient Inference'
    URL: https://paperswithcode.com/paper/soft-conditional-computation
Models:
- Name: tf_efficientnet_cc_b0_4e
  In Collection: TF EfficientNet CondConv
  Metadata:
    FLOPs: 224153788
    Parameters: 13310000
    File Size: 53490940
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - CondConv
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_cc_b0_4e
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1561
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.32%
      Top 5 Accuracy: 93.32%
- Name: tf_efficientnet_cc_b0_8e
  In Collection: TF EfficientNet CondConv
  Metadata:
    FLOPs: 224158524
    Parameters: 24010000
    File Size: 96287616
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - CondConv
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_cc_b0_8e
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1572
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.91%
      Top 5 Accuracy: 93.65%
- Name: tf_efficientnet_cc_b1_8e
  In Collection: TF EfficientNet CondConv
  Metadata:
    FLOPs: 370427824
    Parameters: 39720000
    File Size: 159206198
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - CondConv
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_cc_b1_8e
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.882'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '240'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1584
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.33%
      Top 5 Accuracy: 94.37%
-->