File size: 6,575 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# SSL ResNet

**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. 

The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. 

Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('ssl_resnet18', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `ssl_resnet18`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('ssl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/abs-1905-00546,
  author    = {I. Zeki Yalniz and
               Herv{\'{e}} J{\'{e}}gou and
               Kan Chen and
               Manohar Paluri and
               Dhruv Mahajan},
  title     = {Billion-scale semi-supervised learning for image classification},
  journal   = {CoRR},
  volume    = {abs/1905.00546},
  year      = {2019},
  url       = {http://arxiv.org/abs/1905.00546},
  archivePrefix = {arXiv},
  eprint    = {1905.00546},
  timestamp = {Mon, 28 Sep 2020 08:19:37 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: SSL ResNet
  Paper:
    Title: Billion-scale semi-supervised learning for image classification
    URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for
Models:
- Name: ssl_resnet18
  In Collection: SSL ResNet
  Metadata:
    FLOPs: 2337073152
    Parameters: 11690000
    File Size: 46811375
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    - YFCC-100M
    Training Resources: 64x GPUs
    ID: ssl_resnet18
    LR: 0.0015
    Epochs: 30
    Layers: 18
    Crop Pct: '0.875'
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L894
  Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 72.62%
      Top 5 Accuracy: 91.42%
- Name: ssl_resnet50
  In Collection: SSL ResNet
  Metadata:
    FLOPs: 5282531328
    Parameters: 25560000
    File Size: 102480594
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Bottleneck Residual Block
    - Convolution
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    - YFCC-100M
    Training Resources: 64x GPUs
    ID: ssl_resnet50
    LR: 0.0015
    Epochs: 30
    Layers: 50
    Crop Pct: '0.875'
    Batch Size: 1536
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L904
  Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.24%
      Top 5 Accuracy: 94.83%
-->