File size: 8,090 Bytes
ce5cd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Wind Statistics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Introduction:\n",
"\n",
"The data have been modified to contain some missing values, identified by NaN. \n",
"Using pandas should make this exercise\n",
"easier, in particular for the bonus question.\n",
"\n",
"You should be able to perform all of these operations without using\n",
"a for loop or other looping construct.\n",
"\n",
"\n",
"1. The data in 'wind.data' has the following format:"
]
},
{
"cell_type": "code",
"execution_count": 434,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'\\nYr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL\\n61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04\\n61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83\\n61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71\\n'"
]
},
"execution_count": 434,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\"\"\"\n",
"Yr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL\n",
"61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04\n",
"61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83\n",
"61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71\n",
"\"\"\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" The first three columns are year, month and day. The\n",
" remaining 12 columns are average windspeeds in knots at 12\n",
" locations in Ireland on that day. \n",
"\n",
" More information about the dataset go [here](wind.desc)."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Step 1. Import the necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Import the dataset from this [address](https://github.com/guipsamora/pandas_exercises/blob/master/Stats/Wind_Stats/wind.data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3. Assign it to a variable called data and replace the first 3 columns by a proper datetime index."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4. Year 2061? Do we really have data from this year? Create a function to fix it and apply it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 5. Set the right dates as the index. Pay attention at the data type, it should be datetime64[ns]."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 6. Compute how many values are missing for each location over the entire record. \n",
"#### They should be ignored in all calculations below. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 7. Compute how many non-missing values there are in total."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 8. Calculate the mean windspeeds of the windspeeds over all the locations and all the times.\n",
"#### A single number for the entire dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 9. Create a DataFrame called loc_stats and calculate the min, max and mean windspeeds and standard deviations of the windspeeds at each location over all the days \n",
"\n",
"#### A different set of numbers for each location."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 10. Create a DataFrame called day_stats and calculate the min, max and mean windspeed and standard deviations of the windspeeds across all the locations at each day.\n",
"\n",
"#### A different set of numbers for each day."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 11. Find the average windspeed in January for each location. \n",
"#### Treat January 1961 and January 1962 both as January."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 12. Downsample the record to a yearly frequency for each location."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 13. Downsample the record to a monthly frequency for each location."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 14. Downsample the record to a weekly frequency for each location."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 15. Calculate the mean windspeed for each month in the dataset. \n",
"#### Treat January 1961 and January 1962 as *different* months.\n",
"#### (hint: first find a way to create an identifier unique for each month.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 16. Calculate the min, max and mean windspeeds and standard deviations of the windspeeds across all locations for each week (assume that the first week starts on January 2 1961) for the first 52 weeks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|