File size: 2,880 Bytes
d7d373a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81







import os
import zipfile
import requests
import argparse
from huggingface_hub import HfApi

# Parameters
repo_id = "dappu97/Coil100-Augmented/coil-100-augmented-binary"  # Replace with your Hugging Face repo ID
temp_zip_folder = "./temp_zips"  # Temporary folder to store downloaded ZIPs



# Initialize Hugging Face API
api = HfApi()

# Step 1: List and download all ZIP files from the Hugging Face repository
def download_zip_files(repo_id, temp_zip_folder):
    files = api.list_repo_files(repo_id, repo_type="dataset")
    zip_files = [file for file in files if file.endswith(".zip")]

    for zip_file in zip_files:
        url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{zip_file}"
        local_path = os.path.join(temp_zip_folder, zip_file)
        os.makedirs(os.path.dirname(local_path), exist_ok=True)
        print(f"Downloading {zip_file}...")
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(local_path, "wb") as f:
                f.write(response.content)
            print(f"Downloaded {zip_file} to {local_path}.")
        else:
            print(f"Failed to download {zip_file}. HTTP status code: {response.status_code}")

# Step 2: Extract all ZIP files and save images in a single folder
def extract_zip_files(temp_zip_folder, output_folder):
    os.makedirs(temp_zip_folder, exist_ok=True)

    for zip_file in os.listdir(temp_zip_folder):

        zip_path = os.path.join(temp_zip_folder, zip_file)
        if not zipfile.is_zipfile(zip_path):
            continue  # Skip non-ZIP files

        print(f"Extracting {zip_file}...")
        with zipfile.ZipFile(zip_path, "r") as z:
            for file_name in z.namelist():
                # Extract only files (skip directories)
                if not file_name.endswith("/"):
                    file_data = z.read(file_name)
                    output_path = os.path.join(output_folder, os.path.basename(file_name))
                    with open(output_path, "wb") as f:
                        f.write(file_data)


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description="Download and unzip ZIP files from a Hugging Face dataset.")
    parser.add_argument("output_folder", help="Path to the folder where extracted files will be saved.")
    args = parser.parse_args()

    # Folder to save all images
    output_folder = args.output_folder

    # Create output directories
    os.makedirs(output_folder, exist_ok=True)
    os.makedirs(temp_zip_folder, exist_ok=True)


    # Download and extract the dataset
    download_zip_files(repo_id, temp_zip_folder)
    extract_zip_files(os.path.join(temp_zip_folder, "coil-100-augmented-binary"), output_folder)

    print(f"All images have been saved to {output_folder}.")