File size: 1,872 Bytes
1445530
 
 
 
 
5eb143f
e014ae7
1445530
 
5eb143f
 
 
 
 
 
04a59cc
3eb9d8b
04a59cc
e014ae7
5eb143f
 
febfceb
5eb143f
e014ae7
 
 
 
 
 
5eb143f
 
e014ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb143f
 
 
 
e014ae7
5eb143f
67e5904
5eb143f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e014ae7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
task_categories:
- image-feature-extraction
- image-classification
- image-to-3d
- image-segmentation
size_categories:
- 1M<n<10M
---


## Dataset Details

This dataset derives from [Coil100](https://huggingface.co/datasets/Voxel51/COIL-100). 
There are more than 1,1M images of 100 objects. Each object was turned on a turnable through 360 degrees to vary object pose with respect to a fixed color camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 poses per object. 

*In addition* to the original dataset, planar rotation (9 angles) and  18 scaling factors have been applied so that there are no dependencies between factors.
Objects have a wide variety of complex geometric and reflectance characteristics.

 
This augmented version of Coil100 has been designed especially for Disentangled Representation Learning for real images, the Factors of Variations are:

| Factors  | # values |
|----------|----------|
| Object   | 100      |
| 3D Pose  | 72       |
| Rotation | 9        |
| Scale    | 18       |


The binarized version is also available.


## How to download

With Python > 3.0 install 
  ```
pip install huggingface_hub
```

Then to download the RGB dataset run 
```
python download_coil100.py
```

And if you want the binary version run
```
python download_coil100_binary.py
```


## Citation

if you use the dataset, please cite us:

**BibTeX:**
```bibtex
@article{dapueto2024transferring,
  title={Transferring disentangled representations: bridging the gap between synthetic and real images},
  author={Dapueto, Jacopo and Noceti, Nicoletta and Odone, Francesca},
  journal={arXiv preprint arXiv:2409.18017},
  year={2024}
}
```

## Uses

This dataset is intended for non-commercial research purposes only. 

## Dataset Card Authors

[Jacopo Dapueto](https://huggingface.co/dappu97)