File size: 3,510 Bytes
38f47f6 b879b12 38f47f6 b879b12 38f47f6 b879b12 38f47f6 b879b12 38f47f6 b879b12 38f47f6 b879b12 38f47f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "056aa255-fda1-4cde-be24-459f6ad2c8b9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3165: DtypeWarning: Columns (4) have mixed types.Specify dtype option on import or set low_memory=False.\n",
" has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('raw/bq-results-20211206-133858-irtkgx60el7i.csv').drop(['ParentUrl', 'ParentAuthor', 'ParentTime', 'ParentScore'], axis=1)\n",
"\n",
"# There's a mix of HTML, sanitized links and raw Unicode that we'd like to clean up\n",
"df.text = df.text.str.replace('<p>', '\\n')\n",
"strings_to_remove = ['rel=\"nofollow\"', '<pre>', '</pre>', '<i>', '</i>', '<code>', '</code>', '>']\n",
"email_regex = '[a-zA-Z0-9._-]{0,30}@[a-zA-Z0-9._-]{0,20}\\.[a-zA-Z0-9_-]{2,3}' # for redacting emails\n",
"munged_url_regex = 'http(s)?:\\&\\#.*?\\<\\/a>'\n",
"\n",
"for string in strings_to_remove:\n",
" df.text = df.text.str.replace(string, '')\n",
"\n",
"\n",
"df.text = df.text.replace(email_regex, 'REDACTED_EMAIL', regex=True)\n",
"df.text = df.text.replace(munged_url_regex, '', regex=True)\n",
"\n",
" # fix some unicode issues\n",
"df.text = df.text.str.replace(''', \"'\")\n",
"df.text = df.text.str.replace('/', \"/\")\n",
"df.text = df.text.str.replace(\""\", '\"')\n",
"\n",
"hiring_df = df[df.ParentTitle.str.lower().str.contains('who is hiring')]\n",
"wants_to_be_hired_df = df[df.ParentTitle.str.lower().str.contains('wants to be hired')]\n",
"freelancer_df = df[df.ParentTitle.str.lower().str.contains('freelancer')]\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "57ca7c96-d94c-4e65-8113-da7729558247",
"metadata": {},
"outputs": [],
"source": [
"import datasets\n",
"from huggingface_hub import create_repo\n",
"from huggingface_hub import Repository\n",
"\n",
"all_datasets = datasets.dataset_dict.DatasetDict({'hiring': datasets.Dataset.from_pandas(hiring_df).remove_columns('__index_level_0__'),\n",
" 'wants_to_be_hired': datasets.Dataset.from_pandas(wants_to_be_hired_df).remove_columns('__index_level_0__'),\n",
" 'freelancer': datasets.Dataset.from_pandas(freelancer_df).remove_columns('__index_level_0__')})\n",
"data_path = './data'\n",
"all_datasets.save_to_disk(data_path)\n",
"\n",
"repo_url = 'https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts'\n",
"repo = Repository(local_dir=\".\", clone_from=repo_url)\n",
"repo.git_add(data_path)\n",
"repo.git_add('*.ipynb')\n",
"repo.git_add('README.md')\n",
"repo.git_commit(\"A standard update\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|