File size: 149,350 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 |
# File: pixparse-main/src/pixparse/app/eval.py import logging import os import json from dataclasses import dataclass, replace, field from typing import List import simple_parsing from simple_parsing import ArgumentParser import torch from pixparse.data import DataCfg, create_loader from pixparse.framework import TaskEval, TaskEvalCfg, DeviceEnv, Monitor, evaluate, setup_logging, random_seed from pixparse.utils.s3_utils import load_checkpoint_from_s3 from pixparse.task.task_factory import TaskFactory from chug.webdataset import create_doc_anno_pipe, create_image_text_pipe from collections import OrderedDict _logger = logging.getLogger('eval') @dataclass class EvalCfg: experiment: str = '' output_dir: str = './output' log_filename: str = 'out.log' dataset_name: str = '' s3_bucket: str = '' checkpoint_path: str = '' metrics_file_path: str = '' task_name: str = '' datasets: List[str] = field(default_factory=lambda : ['eval']) seed: int = 42 def eval(cfg: EvalCfg, task: TaskEval, eval_loaders: dict): device_env = task.device_env metrics = evaluate(task, eval_loaders) with open(cfg.metrics_file_path, 'w') as f: json.dump(metrics, f) parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) parser.add_arguments(EvalCfg, dest='eval') parser.add_arguments(TaskEvalCfg, dest='task') parser.add_arguments(DataCfg, dest='data') def main(): args = parser.parse_args() eval_cfg: EvalCfg = args.eval data_cfg: DataCfg = args.data device_env = DeviceEnv() (task, task_cfg) = TaskFactory.create_task(task_name=eval_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) random_seed(eval_cfg.seed, rank=device_env.global_rank) _logger.info(f'Device env is {device_env}') assert eval_cfg.output_dir is not None, f'output_dir is not provided. Stopping eval run.' if device_env.is_primary(): log_path = os.path.join(eval_cfg.output_dir, eval_cfg.log_filename) setup_logging(log_path) monitor = Monitor(eval_cfg.experiment, output_dir=eval_cfg.output_dir, output_enabled=device_env.is_primary()) if eval_cfg.task_name not in ['donut_eval_ocr']: checkpoint_path = eval_cfg.checkpoint_path eval_cfg = replace(eval_cfg, checkpoint_path=checkpoint_path) if eval_cfg.s3_bucket != '': _logger.info('s3 bucket specified. Loading checkpoint from s3.') checkpoint = load_checkpoint_from_s3(eval_cfg.s3_bucket, eval_cfg.checkpoint_path) else: assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' checkpoint = torch.load(eval_cfg.checkpoint_path) if isinstance(checkpoint, OrderedDict): state_dict = checkpoint else: state_dict = checkpoint['model'] checkpoint_name = eval_cfg.checkpoint_path.replace('/', '_').replace('.pt', '') metrics_file_name = f'{checkpoint_name}-{eval_cfg.dataset_name}-metrics.json' eval_state_dict = {k.replace('module.', ''): v for (k, v) in state_dict.items()} task.resume_state_dict = eval_state_dict else: metrics_file_name = f'{eval_cfg.task_name}-{eval_cfg.dataset_name}-metrics.json' eval_cfg.metrics_file_path = os.path.join(eval_cfg.output_dir, metrics_file_name) if device_env.is_primary(): _logger.info(task_cfg) _logger.info(eval_cfg) loaders = {} assert data_cfg.eval is not None, f'data_cfg.eval is not set.' loaders['eval'] = create_loader(data_cfg.eval, is_train=False, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_eval, anno_preprocess=task.anno_preprocess_eval, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, local_rank=device_env.local_rank, create_decoder_pipe=create_image_text_pipe) task.setup() if device_env.is_primary(): _logger.info(task) eval(eval_cfg, task, loaders) task.end() if __name__ == '__main__': main() # File: pixparse-main/src/pixparse/app/train.py import logging import os from dataclasses import dataclass, replace from datetime import datetime from typing import Dict, Optional import simple_parsing from simple_parsing import ArgumentParser import torch from pixparse.data import DataCfg, create_loader from pixparse.framework import DeviceEnv, Monitor, train_one_interval, evaluate, setup_logging, random_seed, TaskTrain, TaskTrainCfg from pixparse.utils.name_utils import clean_name from pixparse.utils.s3_utils import load_checkpoint_from_s3 from pixparse.task import TaskFactory from chug.common import LoaderBundle from chug.webdataset import create_doc_anno_pipe from collections import OrderedDict _logger = logging.getLogger('train') @dataclass class TrainCfg: experiment: Optional[str] = None output_dir: str = './output' log_filename: str = 'out.log' s3_bucket: str = '' resume: bool = False checkpoint_path: str = '' output_checkpoint_dir: Optional[str] = None seed: int = 42 task_name: str = 'cruller_pretrain' wandb: bool = False wandb_project: str = 'unknown' tensorboard: bool = False log_eval_data: bool = False def train(cfg: TrainCfg, task: TaskTrain, loaders: Dict[str, LoaderBundle]): device_env = task.device_env train_loader = loaders['train'] for i in range(task.start_interval, task.num_intervals): train_loader.set_interval(i) train_one_interval(task, train_loader) if device_env.is_primary(): checkpoint_dir = os.path.join(cfg.output_checkpoint_dir, cfg.experiment) os.makedirs(checkpoint_dir, exist_ok=True) torch.save(task.model.state_dict(), os.path.join(checkpoint_dir, f'checkpoint-{i}.pt')) parser = ArgumentParser(add_option_string_dash_variants=simple_parsing.DashVariant.DASH, argument_generation_mode=simple_parsing.ArgumentGenerationMode.BOTH, add_config_path_arg=True) parser.add_arguments(TrainCfg, dest='train') parser.add_arguments(TaskTrainCfg, dest='task') parser.add_arguments(DataCfg, dest='data') def main(): args = parser.parse_args() train_cfg: TrainCfg = args.train data_cfg: DataCfg = args.data device_env = DeviceEnv() (task, task_cfg) = TaskFactory.create_task(task_name=train_cfg.task_name, task_args=args.task, device_env=device_env, monitor=None) random_seed(train_cfg.seed, rank=device_env.global_rank) _logger.info(f'Device env is {device_env}') if train_cfg.experiment is None: model_name_safe = clean_name(task_cfg.model_name) date_str = datetime.now().strftime('%Y%m%d-%H%M%S') if device_env.world_size > 1: date_str = device_env.broadcast_object(date_str) experiment = '-'.join([date_str, f'task_{train_cfg.task_name}', f'model_{model_name_safe}', f"lr_{'{:.1e}'.format(task_cfg.opt.learning_rate)}", f'b_{data_cfg.train.batch_size}']) train_cfg = replace(train_cfg, experiment=experiment) resume_latest = False experiment_path = os.path.join(train_cfg.output_dir, train_cfg.experiment) log_path = None if device_env.is_primary(): os.makedirs(experiment_path, exist_ok=True) log_path = os.path.join(experiment_path, train_cfg.log_filename) if os.path.exists(log_path) and (not resume_latest): _logger.error('Error. Experiment already exists. Use --experiment {} to specify a new experiment.') return -1 setup_logging(log_path) task.monitor = Monitor(train_cfg.experiment, output_dir=experiment_path, wandb=train_cfg.wandb, wandb_project=train_cfg.wandb_project, tensorboard=train_cfg.tensorboard, output_enabled=device_env.is_primary()) if train_cfg.resume: checkpoint_path = train_cfg.checkpoint_path train_cfg = replace(train_cfg, checkpoint_path=checkpoint_path) if train_cfg.s3_bucket != '': _logger.info('s3 bucket specified. Loading checkpoint from s3.') checkpoint = load_checkpoint_from_s3(train_cfg.s3_bucket, train_cfg.checkpoint_path) else: assert os.path.isfile(checkpoint_path), f'Cannot find checkpoint {checkpoint_path}: File not found' checkpoint = torch.load(train_cfg.checkpoint_path) if isinstance(checkpoint, OrderedDict): state_dict = checkpoint else: state_dict = checkpoint['model'] task.state_dict = state_dict task.resume = True output_checkpoint_dir = train_cfg.output_checkpoint_dir or os.path.join(experiment_path, 'checkpoints') os.makedirs(output_checkpoint_dir, exist_ok=True) train_cfg = replace(train_cfg, output_checkpoint_dir=output_checkpoint_dir) if device_env.is_primary(): _logger.info(task_cfg) _logger.info(train_cfg) loaders = {} assert data_cfg.train is not None or data_cfg.eval is not None, f'Neither data_cfg.train nor data_cfg.eval are set.' if data_cfg.train is not None: loaders['train'] = create_loader(data_cfg.train, is_train=True, collate_fn=task.collate_fn, image_preprocess=task.image_preprocess_train, anno_preprocess=task.anno_preprocess_train, image_fmt=task_cfg.model.image_encoder.image_fmt, world_size=device_env.world_size, global_rank=device_env.global_rank, create_decoder_pipe=create_doc_anno_pipe) task.train_setup(num_batches_per_interval=loaders['train'].num_batches) if device_env.is_primary(): _logger.info(task) train(train_cfg, task, loaders) if __name__ == '__main__': main() # File: pixparse-main/src/pixparse/data/config.py from dataclasses import dataclass, field from typing import List, Optional @dataclass class PreprocessCfg: pass @dataclass class DatasetCfg: source: str num_samples: int batch_size: int split: str format: str = 'webdataset' num_workers: int = 4 @dataclass class DataCfg: train: Optional[DatasetCfg] = None eval: Optional[DatasetCfg] = None # File: pixparse-main/src/pixparse/data/datasets_utils.py import json import os from ast import literal_eval import torch from datasets import load_dataset from PIL import Image from torch.utils.data import DataLoader, Dataset from torchvision import transforms from pixparse.utils.json_utils import json2token '' class CustomVQADataset(Dataset): def __init__(self, root_dir, split, transform=None): self.extra_tokens = ['<s_answer>', '</s_answer>', '</s_question>', '<s_question>'] self.root_dir = root_dir self.split = split assert split in ['train', 'test', 'val'], 'split is not train, test or val.' if split == 'test' or split == 'val': json_path = os.path.join(root_dir, split, f'{split}_v1.0.json') else: json_path = os.path.join(root_dir, split, f'processed_{split}_v1.0.json') assert os.path.isdir(self.root_dir), f"Can't find {root_dir}. Make sure you have DocVQA files locally." assert os.path.isfile(json_path), f'{json_path} not found. Make sure you have the processed dataset.' self.img_dir = os.path.join(root_dir, split) with open(json_path, 'r') as f: self.data_dict = json.load(f) self.all_images = list(self.data_dict.keys()) self.transform = transform def __len__(self): if self.split == 'test' or self.split == 'val': return len(self.data_dict['data']) return len(self.all_images) def __getitem__(self, index): if self.split == 'test': entry = self.data_dict['data'][index] labels = '<s_question>' + entry['question'] + '</s_question>' img_path = os.path.join(self.img_dir, entry['image']) question_id = entry['questionId'] image_id = entry['image'] if self.split == 'val': entry = self.data_dict['data'][index] labels = {'question': entry['question'], 'answers': entry['answers']} img_path = os.path.join(self.img_dir, entry['image']) question_id = entry['questionId'] image_id = entry['image'] else: image_id = self.all_images[index] questions_and_answers = self.data_dict[image_id] labels = questions_and_answers img_path = os.path.join(self.img_dir, image_id) question_id = -1 image = Image.open(img_path).convert('L') if self.transform: image = self.transform(image) return {'image': image, 'labels': labels, 'image_id': image_id, 'question_id': question_id} class SafeDataset: def __init__(self, original_dataset): self.original_dataset = original_dataset def __len__(self): return len(self.original_dataset) def __getitem__(self, idx): try: item = self.original_dataset[idx] return item except Exception as e: return None def get_additional_tokens_from_dataset(all_special_tokens: list, dataset=None, dataset_id: str='naver-clova-ix/cord-v2') -> list: if dataset_id == 'naver-clova-ix/cord-v2': def collate_fn(batch): text_inputs = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] return {'label': text_inputs} cord = load_dataset(dataset_id) loader = DataLoader(cord['train'], batch_size=32, collate_fn=collate_fn) new_special_tokens = [] for (i, batch) in enumerate(loader): for text in batch['label']: (_, batch_special_tokens) = json2token(text, all_special_tokens) new_special_tokens += batch_special_tokens new_special_tokens = list(set(new_special_tokens)) return new_special_tokens # File: pixparse-main/src/pixparse/data/loader.py from typing import Callable from chug import create_wds_loader, create_doc_anno_pipe from chug.common import LoaderBundle from datasets import VerificationMode from datasets import load_dataset from torch.utils.data import DataLoader, DistributedSampler from pixparse.data.datasets_utils import SafeDataset, CustomVQADataset from .config import DatasetCfg class GenericLoader(DataLoader): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.num_batches = len(self.dataset) // self.batch_size if len(self.dataset) % self.batch_size != 0: self.num_batches += 1 def create_loader(cfg: DatasetCfg, is_train: bool, image_preprocess, anno_preprocess, collate_fn: Callable=None, image_key='pdf;tif;tiff;png;jpg;jpeg', image_fmt='L', start_interval: int=0, seed: int=0, world_size: int=1, global_rank: int=0, create_decoder_pipe: Callable=create_doc_anno_pipe): decoder = create_decoder_pipe(image_preprocess=image_preprocess, anno_preprocess=anno_preprocess, image_key=image_key, image_fmt=image_fmt) if cfg.format == 'webdataset': loader = create_wds_loader(cfg.source, decoder, is_train=is_train, num_samples=cfg.num_samples, workers=cfg.num_workers, batch_size=cfg.batch_size, seed=seed, world_size=world_size) elif cfg.format == 'hf_dataset': if cfg.source == 'SinglePageDocVQA': dataset = CustomVQADataset(root_dir=f'/fsx/pablo/.cache/{cfg.source}', split=cfg.split) else: dataset = load_dataset(cfg.source, verification_mode=VerificationMode.ALL_CHECKS)[cfg.split] dataset = SafeDataset(dataset) sampler = None if world_size > 1: sampler = DistributedSampler(dataset, rank=global_rank, shuffle=True, seed=seed, num_replicas=world_size, drop_last=True) base_loader = DataLoader(dataset=dataset, collate_fn=collate_fn, sampler=sampler, batch_size=cfg.batch_size, num_workers=cfg.num_workers) loader = LoaderBundle(loader=base_loader, num_batches=len(base_loader), num_samples=len(dataset), sampler=sampler) return loader # File: pixparse-main/src/pixparse/data/preprocess.py import logging from typing import Callable import torch _logger = logging.getLogger(__name__) def preprocess_text_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): text = task_start_token + anno + tokenizer.eos_token tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] text = tokenizer_fn(text) target = text.clone() target[target == tokenizer.pad_token_id] = ignore_id prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id return dict(text=[text], target=[target]) def preprocess_ocr_anno(anno, tokenizer: Callable, max_position_embeddings: int, task_start_token: str, prompt_end_token: str, ignore_id: int=-100, generator=None): if isinstance(anno, list): _logger.warning('Old [id, {}] annotation form found, correcting...') anno = anno[1] num_pages = len(anno['pages']) if not num_pages: raise RuntimeError('Empty annotation. Skipping...') tokenizer_fn = lambda x: tokenizer(x, add_special_tokens=False, return_tensors='pt', max_length=max_position_embeddings, padding='max_length', truncation=True).input_ids[0] pad_token_id = tokenizer.pad_token_id prompt_end_token_id = tokenizer.convert_tokens_to_ids(prompt_end_token) current_index = generator.randint(0, num_pages - 1) if not anno['pages'][current_index]['text']: current_index = get_next_valid_page_index(current_index, num_pages, anno) page_indices = [] text_pages = [] target_pages = [] n_wanted_pages = min(1, num_pages) while len(text_pages) < n_wanted_pages: anno_page = anno['pages'][current_index] if not anno_page['text']: raise RuntimeError('No text on page, skipping...') text = '\n'.join(anno_page['text']) orig_text = text text = task_start_token + text + tokenizer.eos_token text = tokenizer_fn(text) target = text.clone() target[target == pad_token_id] = ignore_id target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id text_pages.append(text) target_pages.append(target) page_indices.append(current_index) current_index = get_next_valid_page_index(current_index, num_pages, anno) return (dict(text=text_pages, target=target_pages), dict(page_indices=page_indices, num_pages=num_pages, orig_text=orig_text)) def get_next_valid_page_index(current_index: int, num_pages: int, anno: dict, retries: int=10): for _ in range(retries): current_index = (current_index + 1) % num_pages anno_page = anno['pages'][current_index] if anno_page['text']: return current_index raise RuntimeError(f'No non-empty page found after {retries} attempts') # File: pixparse-main/src/pixparse/data/transforms.py import random from typing import Tuple, Union import timm.data.transforms import torch import torchvision.transforms.functional as F from torchvision import transforms from PIL import Image, ImageOps, ImageFilter from timm.data.transforms import CenterCropOrPad from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD import numpy as np try: import albumentations as alb from albumentations.pytorch import ToTensorV2 has_albumentations = True except ImportError: has_albumentations = False try: import cv2 has_cv2 = True except ImportError: has_cv2 = False def create_transforms(name, image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation: str='bicubic', crop_margin: bool=False, align_long_axis: bool=False, fill=255): basic_args = dict(training=training, image_mean=image_mean, image_std=image_std) adv_args = dict(interpolation=interpolation, crop_margin=crop_margin, align_long_axis=align_long_axis, fill=fill) if name == 'better': return better_transforms(image_size, **basic_args, **adv_args) elif name == 'nougat': return nougat_transforms(image_size, **basic_args, **adv_args) else: return legacy_transforms(image_size, **basic_args) def legacy_transforms(image_size, image_mean, image_std, training=False): pp = transforms.Compose([transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std)]) return pp def better_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, interpolation='bicubic', crop_margin=False, align_long_axis=False, fill=255): interpolation_mode = timm.data.transforms.str_to_interp_mode(interpolation) pp = [] if crop_margin: assert has_cv2, 'CV2 needed to use crop margin.' pp += [CropMargin()] if align_long_axis: pp += [AlignLongAxis(image_size, interpolation=interpolation_mode)] if training: pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation, random_scale_prob=0.05, random_scale_range=(0.85, 1.04), random_aspect_prob=0.05, random_aspect_range=(0.9, 1.11)), transforms.RandomApply([Bitmap()], p=0.05), transforms.RandomApply([transforms.RandomChoice([Erosion(3), Dilation(3)])], p=0.02), transforms.RandomApply([transforms.RandomAffine(degrees=0, shear=(0, 3.0, -3, 0), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.RandomAffine(degrees=3, translate=(0, 0.04), interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ElasticTransform(alpha=50.0, sigma=120 * 0.1, interpolation=interpolation_mode, fill=fill)], p=0.05), transforms.RandomApply([transforms.ColorJitter(0.1, 0.1)], p=0.05), transforms.RandomApply([transforms.GaussianBlur(3, sigma=(0.1, 0.5))], p=0.05), RandomPad(image_size, fill=fill), transforms.CenterCrop(image_size)] else: pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] pp += [transforms.ToTensor(), transforms.Normalize(image_mean, image_std)] return transforms.Compose(pp) def nougat_transforms(image_size, training=True, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD, align_long_axis=False, interpolation='bicubic', fill=255, crop_margin=False): assert has_albumentations, 'Albumentations and CV2 needed to use nougat transforms.' if interpolation == 'bilinear': interpolation_mode = 1 else: interpolation_mode = 2 tv_pp = [] alb_pp = [] if crop_margin: tv_pp += [CropMargin()] if align_long_axis: tv_pp += [AlignLongAxis(image_size)] if training: tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), RandomPad(image_size, fill=fill)] alb_pp += [BitmapAlb(p=0.05), alb.OneOf([ErosionAlb((2, 3)), DilationAlb((2, 3))], p=0.02), alb.Affine(shear={'x': (0, 3), 'y': (-3, 0)}, cval=(255, 255, 255), p=0.03), alb.ShiftScaleRotate(shift_limit_x=(0, 0.04), shift_limit_y=(0, 0.03), scale_limit=(-0.15, 0.03), rotate_limit=2, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.03), alb.GridDistortion(distort_limit=0.05, border_mode=0, interpolation=interpolation_mode, value=fill, p=0.04), alb.Compose([alb.Affine(translate_px=(0, 5), always_apply=True, cval=(255, 255, 255)), alb.ElasticTransform(p=1, alpha=50, sigma=120 * 0.1, alpha_affine=120 * 0.01, border_mode=0, value=fill)], p=0.04), alb.RandomBrightnessContrast(0.1, 0.1, True, p=0.03), alb.ImageCompression(95, p=0.07), alb.GaussNoise(20, p=0.08), alb.GaussianBlur((3, 3), p=0.03)] else: tv_pp += [ResizeKeepRatio(image_size, longest=1, interpolation=interpolation), CenterCropOrPad(image_size, fill=fill)] alb_pp += [alb.Normalize(image_mean, image_std), alb.pytorch.ToTensorV2()] tv_pp += [alb_wrapper(alb.Compose(alb_pp))] return transforms.Compose(tv_pp) def alb_wrapper(transform): def f(im): return transform(image=np.asarray(im))['image'] return f class CropMargin: def __init__(self): pass def __call__(self, img): if isinstance(img, torch.Tensor): assert False else: data = np.array(img.convert('L')) data = data.astype(np.uint8) max_val = data.max() min_val = data.min() if max_val == min_val: return img data = (data - min_val) / (max_val - min_val) * 255 gray = 255 * (data < 200).astype(np.uint8) coords = cv2.findNonZero(gray) (a, b, w, h) = cv2.boundingRect(coords) return img.crop((a, b, w + a, h + b)) class AlignLongAxis: def __init__(self, input_size, interpolation=transforms.InterpolationMode.BICUBIC): self.input_size = input_size self.interpolation = interpolation def __call__(self, img): is_tensor = isinstance(img, torch.Tensor) (img_height, img_width) = img.shape[-2:] if is_tensor else (img.height, img.width) if self.input_size[0] > self.input_size[1] and img_width > img_height or (self.input_size[0] < self.input_size[1] and img_width < img_height): img = F.rotate(img, angle=-90, expand=True, interpolation=self.interpolation) return img class RandomPad: def __init__(self, input_size, fill=0): self.input_size = input_size self.fill = fill @staticmethod def get_params(img, input_size): (width, height) = F.get_image_size(img) delta_width = max(input_size[1] - width, 0) delta_height = max(input_size[0] - height, 0) pad_left = random.randint(0, delta_width) pad_top = random.randint(0, delta_height) pad_right = delta_width - pad_left pad_bottom = delta_height - pad_top return (pad_left, pad_top, pad_right, pad_bottom) def __call__(self, img): padding = self.get_params(img, self.input_size) img = F.pad(img, padding, self.fill) return img class ResizeKeepRatio: def __init__(self, size, longest=0.0, interpolation='bilinear', random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): if isinstance(size, (list, tuple)): self.size = tuple(size) else: self.size = (size, size) self.interpolation = timm.data.transforms.str_to_interp_mode(interpolation) self.longest = float(longest) self.random_scale_prob = random_scale_prob self.random_scale_range = random_scale_range self.random_aspect_prob = random_aspect_prob self.random_aspect_range = random_aspect_range @staticmethod def get_params(img, target_size, longest, random_scale_prob=0.0, random_scale_range=(0.85, 1.05), random_aspect_prob=0.0, random_aspect_range=(0.9, 1.11)): source_size = img.size[::-1] (h, w) = source_size (target_h, target_w) = target_size ratio_h = h / target_h ratio_w = w / target_w ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1.0 - longest) if random_scale_prob > 0 and random.random() < random_scale_prob: ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) ratio_factor = (ratio_factor, ratio_factor) else: ratio_factor = (1.0, 1.0) if random_aspect_prob > 0 and random.random() < random_aspect_prob: aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1]) ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) size = [round(x * f / ratio) for (x, f) in zip(source_size, ratio_factor)] return size def __call__(self, img): size = self.get_params(img, self.size, self.longest, self.random_scale_prob, self.random_scale_range, self.random_aspect_prob, self.random_aspect_range) img = F.resize(img, size, self.interpolation) return img def __repr__(self): interpolate_str = timm.data.transforms.interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += f', interpolation={interpolate_str})' format_string += f', longest={self.longest:.3f})' return format_string class Bitmap: def __init__(self, threshold=200): self.lut = [0 if i < threshold else i for i in range(256)] def __call__(self, img): if img.mode == 'RGB' and len(self.lut) == 256: lut = self.lut + self.lut + self.lut else: lut = self.lut return img.point(lut) class Erosion: def __init__(self, scale=3): super().__init__() if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) @staticmethod def get_params(scale): if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 scale = random.choice(scale) return scale def __call__(self, img): kernel_size = self.get_params(self.scale) if isinstance(img, torch.Tensor): padding = kernel_size // 2 img = -torch.nn.functional.max_pool2d(-img, kernel_size=kernel_size, padding=padding) elif isinstance(img, Image.Image): img = img.filter(ImageFilter.MinFilter(kernel_size)) return img class Dilation: def __init__(self, scale=3): super().__init__() self.scale = scale @staticmethod def get_params(scale): if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 scale = random.choice(scale) return scale def __call__(self, img): kernel_size = self.get_params(self.scale) if isinstance(img, torch.Tensor): padding = kernel_size // 2 img = torch.nn.functional.max_pool2d(img, kernel_size=kernel_size, padding=padding) elif isinstance(img, Image.Image): img = img.filter(ImageFilter.MaxFilter(kernel_size)) return img if has_albumentations: class ErosionAlb(alb.ImageOnlyTransform): def __init__(self, scale, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) def apply(self, img, **params): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) img = cv2.erode(img, kernel, iterations=1) return img class DilationAlb(alb.ImageOnlyTransform): def __init__(self, scale, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) if type(scale) is tuple or type(scale) is list: assert len(scale) == 2 self.scale = scale else: self.scale = (scale, scale) def apply(self, img, **params): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))) img = cv2.dilate(img, kernel, iterations=1) return img class BitmapAlb(alb.ImageOnlyTransform): def __init__(self, value=0, lower=200, always_apply=False, p=0.5): super().__init__(always_apply=always_apply, p=p) self.lower = lower self.value = value def apply(self, img, **params): img = img.copy() img[img < self.lower] = self.value return img # File: pixparse-main/src/pixparse/framework/config.py from dataclasses import dataclass, field from typing import Optional, Tuple @dataclass class OptimizationCfg: optimizer: str = 'adamw' scheduler: str = 'cosine' learning_rate: float = 0.0005 warmup_learning_rate: float = 0.0 weight_decay: float = 0.02 eps: float = 1e-06 clip_grad_value: Optional[float] = None clip_grad_mode: Optional[str] = None grad_accum_steps: int = 1 momentum: Optional[float] = None betas: Optional[Tuple[float, float]] = None layer_decay: Optional[float] = None @dataclass class TaskTrainCfg: num_intervals: int = 100 num_warmup_intervals: int = 5 eval_frequency: int = 1000 opt: OptimizationCfg = field(default_factory=OptimizationCfg) dtype: Optional[str] = None amp: bool = True model_name: str = '' @dataclass class TaskEvalCfg: dtype: Optional[str] = None amp: bool = True model_name: str = '' model_state_dict: dict = field(default_factory=dict) # File: pixparse-main/src/pixparse/framework/device.py """""" import os from dataclasses import dataclass, field, InitVar from enum import Enum from typing import Union, Optional, List, Tuple import torch import torch.distributed as dist def is_distributed_env(): if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) > 1 if 'SLURM_NTASKS' in os.environ: return int(os.environ['SLURM_NTASKS']) > 1 return False def world_info_from_env(): local_rank = 0 for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): if v in os.environ: local_rank = int(os.environ[v]) break global_rank = 0 for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): if v in os.environ: global_rank = int(os.environ[v]) break world_size = 1 for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): if v in os.environ: world_size = int(os.environ[v]) break return (local_rank, global_rank, world_size) class DeviceEnvType(Enum): CPU = 'cpu' CUDA = 'cuda' XLA = 'xla' @dataclass class DeviceEnv: init_device_type: InitVar[Optional[str]] = None init_device_index: InitVar[Optional[int]] = None init_dist_backend: InitVar[str] = 'nccl' init_dist_url: InitVar[str] = 'env://' device: torch.device = field(init=False) world_size: Optional[int] = None local_rank: Optional[int] = None global_rank: Optional[int] = None def is_global_primary(self): return self.global_rank == 0 def is_local_primary(self): return self.local_rank == 0 def is_primary(self, local=False): return self.is_local_primary() if local else self.is_global_primary() def __post_init__(self, init_device_type: Optional[str], init_device_index: Optional[int], init_dist_backend: str, init_dist_url: str): assert torch.cuda.device_count() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True (init_local_rank, init_global_rank, init_world_size) = world_info_from_env() if init_world_size > 1: assert init_device_index is None self.local_rank = int(init_local_rank) is_slurm = 'SLURM_PROCID' in os.environ if 'SLURM_PROCID' in os.environ: torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url, world_size=init_world_size, rank=init_global_rank) else: torch.distributed.init_process_group(backend=init_dist_backend, init_method=init_dist_url) self.world_size = torch.distributed.get_world_size() self.global_rank = torch.distributed.get_rank() if is_slurm: assert self.world_size == init_world_size assert self.global_rank == init_global_rank self.device = torch.device('cuda:%d' % self.local_rank) torch.cuda.set_device(self.local_rank) else: self.device = torch.device('cuda' if init_device_index is None else f'cuda:{init_device_index}') self.local_rank = 0 self.world_size = 1 self.global_rank = 0 def broadcast_object(self, obj, src=0): if self.global_rank == src: objects = [obj] else: objects = [None] dist.broadcast_object_list(objects, src=src) return objects[0] def all_gather_object(self, obj, dst=0): objects = [None for _ in range(self.world_size)] dist.all_gather_object(objects, obj) return objects # File: pixparse-main/src/pixparse/framework/eval.py from .task import TaskEval def evaluate(task: TaskEval, loaders): metrics = dict() authorized_loaders = task.prepare_for_evaluation(loaders) for (key, loader) in authorized_loaders.items(): metrics[key] = dict() for (index_batch, sample) in enumerate(loader.loader): metrics[key][index_batch] = task.step(sample) if hasattr(task, 'average_metrics'): averaged_metrics = task.average_metrics(metrics[key]) metrics[key] = {} metrics[key]['average'] = averaged_metrics return metrics # File: pixparse-main/src/pixparse/framework/logger.py import logging def setup_logging(log_file, debug=False, include_host=False, set_all_loggers=False): level = logging.DEBUG if debug else logging.INFO if include_host: import socket hostname = socket.gethostname() formatter = logging.Formatter(f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') else: formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') logging.root.setLevel(level) if set_all_loggers: loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] for logger in loggers: logger.setLevel(level) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logging.root.addHandler(stream_handler) if log_file: file_handler = logging.FileHandler(filename=log_file) file_handler.setFormatter(formatter) logging.root.addHandler(file_handler) # File: pixparse-main/src/pixparse/framework/monitor.py import csv import logging import os from collections import OrderedDict from typing import Optional, Tuple, Dict, Union import torch from torch.utils.tensorboard.summary import image _logger = logging.getLogger(__name__) try: from torch.utils.tensorboard import SummaryWriter HAS_TB = True except ImportError as e: HAS_TB = False try: import wandb HAS_WANDB = True except ImportError: HAS_WANDB = False def summary_row_dict(results, index=None, index_name='epoch'): assert isinstance(results, dict) row_dict = OrderedDict() if index is not None: row_dict[index_name] = index if not results: return row_dict if isinstance(next(iter(results.values())), dict): for (p, pr) in results.items(): assert isinstance(pr, dict) row_dict.update([('_'.join([p, k]), v) for (k, v) in pr.items()]) else: row_dict.update(results) return row_dict class SummaryCsv: def __init__(self, output_dir, filename='summary.csv'): self.output_dir = output_dir self.filename = os.path.join(output_dir, filename) self.needs_header = not os.path.exists(self.filename) def update(self, row_dict): with open(self.filename, mode='a') as cf: dw = csv.DictWriter(cf, fieldnames=row_dict.keys()) if self.needs_header: dw.writeheader() self.needs_header = False dw.writerow(row_dict) _sci_keys = {'lr'} def _add_kwargs(text_update, name_map=None, **kwargs): def _to_str(key, val): if isinstance(val, float): if key.lower() in _sci_keys: return f'{key}: {val:.3e} ' else: return f'{key}: {val:.4f}' else: return f'{key}: {val}' def _map_name(key, name_map, capitalize=False): if name_map is None: if capitalize: return key.capitalize() if not key.isupper() else key else: return key return name_map.get(key, None) for (k, v) in kwargs.items(): if isinstance(v, dict): for (kk, vv) in v.items(): name = _map_name(kk, name_map) if not name: continue text_update += [_to_str(kk, vv)] else: name = _map_name(k, name_map) if not name: continue text_update += [_to_str(name, v)] class Monitor: def __init__(self, experiment_name=None, output_dir=None, logger=None, hparams=None, wandb=False, wandb_project='unknown', wandb_dir='wandb', tensorboard=False, tensorboard_dir='tensorboard', output_enabled=True, log_eval_data=False): self.output_dir = output_dir self.logger = logger or logging.getLogger('log') hparams = hparams or {} if output_dir is not None: self.csv_writer = SummaryCsv(output_dir=output_dir) else: self.csv_writer = None self.tensorboard = None if tensorboard: assert HAS_TB self.tensorboard = SummaryWriter(log_dir=os.path.join(self.output_dir, tensorboard_dir)) self.wandb = None if wandb: if HAS_WANDB: dir_ = os.path.join(self.output_dir, wandb_dir) self.wandb = wandb.init(project=wandb_project, name=experiment_name, config=hparams, dir=dir_) _logger.info(f'Wandb found. Metrics are being logged to {dir_}') else: _logger.warning("You've requested to log metrics to wandb but package not found. Metrics not being logged to wandb, try `pip install wandb`") self.output_enabled = output_enabled self.log_eval_data = log_eval_data def log_step(self, phase: str, step_idx: int, step_end_idx: Optional[int]=None, interval: Optional[int]=None, loss: Optional[float]=None, rate: Optional[Union[float, Tuple[float, float]]]=None, learning_rate: Optional[float]=None, phase_suffix: str='', metrics: dict=None, eval_data: dict=None, **kwargs): if not self.output_enabled: return if 'num_steps' in kwargs: step_end_idx = max(0, kwargs.pop('num_steps') - 1) phase_title = f'{phase.capitalize()} ({phase_suffix})' if phase_suffix else f'{phase.capitalize()}:' progress = 100.0 * step_idx / step_end_idx if step_end_idx else 0.0 rate_str = '' if isinstance(rate, (tuple, list)): rate_str = f'Rate: {rate[0]:.2f}/s ({rate[1]:.2f}/s)' elif rate is not None: rate_str = f'Rate: {rate:.2f}/s' text_update = [phase_title, f'{interval}' if interval is not None else None, f'[{step_idx}]' if step_end_idx is None else None, f'[{step_idx}/{step_end_idx} ({progress:>3.0f}%)]' if step_end_idx is not None else None, rate_str, f'loss: {loss:.5f}' if loss is not None else None, f'lr: {learning_rate:.5f}' if learning_rate is not None else None] _add_kwargs(text_update, **kwargs) log_str = ' '.join((item for item in text_update if item)) self.logger.info(log_str) if self.tensorboard is not None: if metrics is not None: for (metric_category, metric_items) in metrics.items(): for (metric_name, metric_value) in metric_items.items(): self.tensorboard.add_scalar('/'.join([metric_category, metric_name, phase_title]), metric_value, step_idx) if eval_data is not None and self.log_eval_data: for (eval_data_category, eval_data_triplet) in eval_data.items(): if eval_data_category == 'ocr_reconstruction_data': image_tag = '/'.join([eval_data_category, 'image', phase_title]) self.tensorboard._get_file_writer().add_summary(image(image_tag, eval_data_triplet['image'], dataformats='CHW'), step_idx) self.tensorboard.add_text('/'.join([eval_data_category, 'original_text', phase_title]), eval_data_triplet['original_text'], step_idx) self.tensorboard.add_text('/'.join([eval_data_category, 'reconstructed_text', phase_title]), eval_data_triplet['reconstructed_text'], step_idx) if loss is not None: self.tensorboard.add_scalar('/'.join(['Loss', phase_title]), loss, step_idx) if learning_rate is not None: self.tensorboard.add_scalar('/'.join(['Learning Rate', phase_title]), loss, step_idx) for (k, v) in kwargs.items(): self.tensorboard.add_scalar('/'.join([k, phase_title]), v, step_idx) if self.wandb is not None: wandb_log = dict(**kwargs) if loss: wandb_log['loss'] = loss if learning_rate: wandb_log['learning_rate'] = learning_rate def log_phase(self, phase: str='eval', interval: Optional[int]=None, name_map: Optional[dict]=None, **kwargs): if not self.output_enabled: return title = [f'{phase.capitalize()}', f'interval {interval}' if interval is not None else None, 'completed. '] title_str = ' '.join((i for i in title if i)) results = [] _add_kwargs(results, name_map=name_map, **kwargs) log_str = title_str + ', '.join((item for item in results if item)) self.logger.info(log_str) def write_summary(self, results: Dict, index: Optional[Union[int, str]]=None, index_name: str='interval'): if not self.output_enabled: return row_dict = summary_row_dict(index=index, index_name=index_name, results=results) if self.csv_writer: self.csv_writer.update(row_dict) if self.wandb is not None: wandb.log(row_dict) if self.tensorboard: pass # File: pixparse-main/src/pixparse/framework/task.py from dataclasses import dataclass from typing import Any, Dict, Optional from .config import TaskTrainCfg, TaskEvalCfg from .device import DeviceEnv from .monitor import Monitor class Task: def __init__(self, device_env: DeviceEnv, monitor: Monitor=None): self.device_env = device_env self.monitor = monitor class TaskEval(Task): def __init__(self, cfg: TaskEvalCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(device_env=device_env, monitor=monitor) def collate_fn(self, batch): pass def setup(self, *args, **kwargs): pass def prepare_for_evaluation(self): pass def step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def end(self): pass class TaskTrain(Task): def __init__(self, cfg: TaskTrainCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(device_env=device_env, monitor=monitor) self.num_intervals = cfg.num_intervals self.num_warmup_intervals = cfg.num_warmup_intervals self.eval_frequency = cfg.eval_frequency self.num_steps_per_interval = None self.start_interval = 0 self.step = 0 self.batch_idx = 0 self.interval_idx = 0 self.interval_batch_idx = 0 self.optimizer = None self.scheduler = None self.scaler = None self.autocast = None def collate_fn(self, batch): pass def train_setup(self, *args, **kwargs): pass def train_interval_start(self): pass def train_interval_end(self): pass def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def get_current_lr(self): lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] lr = sum(lrl) / len(lrl) return lr # File: pixparse-main/src/pixparse/framework/train.py from .task import TaskTrain import torch import os def train_one_interval(task: TaskTrain, loader): task.train_interval_start() for (i, sample) in enumerate(loader.loader): task.train_step(sample) task.train_interval_end() # File: pixparse-main/src/pixparse/models/config.py import copy import re from pathlib import Path from dataclasses import dataclass, field from typing import Optional, Tuple from simple_parsing.helpers import Serializable from pixparse.utils.name_utils import _natural_key, clean_name _MODEL_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] _MODEL_CONFIGS = {} @dataclass class ImageEncoderCfg(Serializable): name: str = 'vit_base_patch16_224' image_fmt: str = 'L' image_size: Optional[Tuple[int, int]] = (576, 448) pretrained: bool = True @dataclass class TextDecoderCfg(Serializable): name: str = 'facebook/bart-base' pretrained: bool = True num_decoder_layers: Optional[int] = 4 max_length: Optional[int] = 1024 pad_token_id: Optional[int] = None @dataclass class ModelCfg(Serializable): image_encoder: ImageEncoderCfg = field(default_factory=ImageEncoderCfg) text_decoder: TextDecoderCfg = field(default_factory=TextDecoderCfg) def _scan_model_configs(): global _MODEL_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: model_cfg = ModelCfg.load(cf) _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = {k: v for (k, v) in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} _scan_model_configs() def list_models(): return list(_MODEL_CONFIGS.keys()) def get_model_config(model_name): model_name = clean_name(model_name) cfg = _MODEL_CONFIGS.get(model_name, None) return copy.deepcopy(cfg) # File: pixparse-main/src/pixparse/models/cruller.py import torch.nn as nn from .config import ModelCfg from .image_encoder_timm import ImageEncoderTimm from .text_decoder_hf import TextDecoderHf class Cruller(nn.Module): def __init__(self, cfg: ModelCfg): super().__init__() self.image_encoder = ImageEncoderTimm(cfg.image_encoder) self.text_decoder = TextDecoderHf(cfg.text_decoder) def forward(self, image_input, text_input): encoder_output = self.image_encoder(image_input) decoder_output = self.text_decoder(text_input, encoder_hidden_states=encoder_output, return_dict=True) return decoder_output # File: pixparse-main/src/pixparse/models/image_encoder_timm.py import timm from torch import nn as nn from pixparse.models.config import ImageEncoderCfg def create_image_encoder(cfg: ImageEncoderCfg) -> nn.Module: assert cfg.name extra_kwargs = {} if cfg.image_size is not None: extra_kwargs['img_size'] = cfg.image_size assert cfg.image_fmt in ('L', 'RGB') model = timm.create_model(cfg.name, pretrained=cfg.pretrained, in_chans=1 if cfg.image_fmt == 'L' else 3, num_classes=0, global_pool='', **extra_kwargs) return model class ImageEncoderTimm(nn.Module): def __init__(self, cfg: ImageEncoderCfg): super().__init__() self.trunk = create_image_encoder(cfg) self.pool = None self.head = None def forward(self, x): x = self.trunk(x) if self.pool is not None: x = self.pool(x) if self.head is not None: x = self.head(x) return x # File: pixparse-main/src/pixparse/models/text_decoder_hf.py from typing import Optional import torch import transformers from torch import nn as nn from pixparse.models.config import TextDecoderCfg def create_text_decoder(cfg: TextDecoderCfg) -> transformers.BartForCausalLM: assert cfg.name config = transformers.AutoConfig.from_pretrained(cfg.name) config.add_cross_attention = True if False: config.is_encoder_decoder = False config.scale_embedding = True config.add_final_layer_norm = True if cfg.num_decoder_layers is not None: config.decoder_layers = cfg.num_decoder_layers if cfg.max_length is not None: config.max_position_embeddings = cfg.max_length if cfg.pretrained: model = transformers.AutoModelForCausalLM.from_pretrained(cfg.name, config=config) else: model = transformers.AutoModelForCausalLM.from_config(config) return model class TextDecoderHf(nn.Module): def __init__(self, cfg: TextDecoderCfg): super().__init__() self.trunk = create_text_decoder(cfg) self.prepare_inputs_for_generation = self.prepare_inputs_for_inference def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, pad_token_id: int, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def forward(self, input_ids, attention_mask: Optional[torch.Tensor]=None, encoder_hidden_states: Optional[torch.Tensor]=None, past_key_values: Optional[torch.Tensor]=None, use_cache: bool=None, output_attentions: Optional[torch.Tensor]=None, output_hidden_states: Optional[torch.Tensor]=None, return_dict: bool=None): output = self.trunk(input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) return output # File: pixparse-main/src/pixparse/task/__init__.py from .task_cruller_pretrain import TaskCrullerPretrain, TaskCrullerPretrainCfg from .task_cruller_finetune_RVLCDIP import TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg from .task_cruller_finetune_CORD import TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg from .task_cruller_finetune_xent import TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg from .task_cruller_finetune_docvqa import TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg from .task_cruller_eval_ocr import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg from .task_donut_eval_ocr import TaskDonutEvalOCR, TaskDonutEvalOCRCfg from .task_cruller_eval_rvlcdip import TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg from .task_cruller_eval_cord import TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg from .task_cruller_eval_docvqa import TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg from .task_factory import TaskFactory # File: pixparse-main/src/pixparse/task/task_cruller_eval_cord.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch from torch import nn import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF from pixparse.utils.json_utils import json2token, token2json from pixparse.utils.json_utils import JSONParseEvaluator import numpy as np from ast import literal_eval _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalCORDCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalCORD(TaskEval): def __init__(self, cfg: TaskCrullerEvalCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_cord>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False cord_finetune_tokens = ['<sep/>', '<s_cord>', '</s_service_price>', '<s_subtotal_price>', '<s_discountprice>', '</s_sub>', '<s_sub>', '</s_total_etc>', '</s_discountprice>', '</s_vatyn>', '</s_subtotal_price>', '<s_changeprice>', '</s_total>', '</s_unitprice>', '<s_emoneyprice>', '</s_tax_price>', '</s_othersvc_price>', '</s_cnt>', '<s_vatyn>', '<s_unitprice>', '<s_total>', '<s_price>', '</s_price>', '<s_sub_total>', '</s_num>', '<s_total_etc>', '</s_creditcardprice>', '<s_tax_price>', '<s_menu>', '<s_nm>', '<s_menutype_cnt>', '</s_changeprice>', '<s_num>', '<s_itemsubtotal>', '</s_etc>', '<s_creditcardprice>', '</s_menuqty_cnt>', '</s_emoneyprice>', '<s_menuqty_cnt>', '<s_discount_price>', '</s_menu>', '</s_sub_total>', '<s_etc>', '</s_void_menu>', '<s_cashprice>', '</s_discount_price>', '</s_total_price>', '</s_nm>', '<s_service_price>', '<s_othersvc_price>', '</s_itemsubtotal>', '<s_void_menu>', '<s_total_price>', '</s_cashprice>', '</s_menutype_cnt>', '<s_cnt>'] special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if newly_added_num_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(cord_finetune_tokens))}) self.vocab_size = len(self.tokenizer.trunk) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] self.evaluator = JSONParseEvaluator() def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] inputs_to_stack = [] for text in raw_texts: (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_eval images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def step(self, batch): metrics = {} for (image, label) in zip(batch['image'], batch['label']): decoded_gt = self.tokenizer.trunk.decode(label) ground_truth = token2json(decoded_gt) with torch.inference_mode(): tensor_image = image.unsqueeze(0).to(self.device_env.device) output = self.model.image_encoder(tensor_image) current_string = '<s_cord>' input_ids = torch.tensor(self.tokenizer.trunk.encode('<s_cord>', add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) max_steps = 512 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_id = torch.argmax(probabilities[0, -1]).item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_string += next_token if next_token == '</s>': break input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) predicted_json = token2json(current_string) self.all_predictions.append(predicted_json) self.all_ground_truths.append(ground_truth) acc = self.evaluator.cal_acc(predicted_json, ground_truth) self.acc_list.append(acc) metrics['batch_accuracy'] = acc return metrics def average_metrics(self, metrics: dict): avg_accuracy = np.mean(self.acc_list) f1 = self.evaluator.cal_f1(self.all_predictions, self.all_ground_truths) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] return {'average_accuracy': avg_accuracy, 'f1_score': f1} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_docvqa.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch from torch import nn import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF from pixparse.utils.json_utils import json2token, token2json from pixparse.utils.json_utils import JSONParseEvaluator from pixparse.utils.metrics import average_normalized_levenshtein_similarity import numpy as np from ast import literal_eval _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalDOCVQACfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalDOCVQA(TaskEval): def __init__(self, cfg: TaskCrullerEvalDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_docvqa>' self.prompt_end_token = '<s_answer>' self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False docvqa_finetune_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_question>', '</s_question>', '</s_answer>'] special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) newly_added_num_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if newly_added_num_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(docvqa_finetune_tokens))}) self.vocab_size = len(self.tokenizer.trunk) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Grayscale(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.raw_predictions_test = dict() def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) self.all_ground_truths = [] self.all_predictions = [] self.acc_list = [] self.evaluator = JSONParseEvaluator() def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): question_ids = [] image_ids = [] images = [] questions = [] answers = [] for item in batch: question_ids.append(item['question_id']) image_ids.append(item['image_id']) images.append(item['image']) questions.append(item['labels']['question']) answers.append(item['labels']['answers']) transform = self.image_preprocess_eval images = torch.stack([transform(img) for img in images]) return {'images': images, 'questions': questions, 'ground_truth_answers': answers, 'image_ids': image_ids, 'question_ids': question_ids} def step(self, batch): metrics = {} image_outputs = self.model.image_encoder(batch['images'].to(self.device_env.device)) for (output, question, answers, question_id) in zip(image_outputs, batch['questions'], batch['ground_truth_answers'], batch['question_ids']): self.all_ground_truths.append(answers) with torch.inference_mode(): current_string = self.task_start_token + '<s_question>' + question + '</s_question>' + '<s_answer>' input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) max_steps = 512 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_id = torch.argmax(probabilities[0, -1]).item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_string += next_token if next_token == '</s>': break input_ids = torch.tensor(self.tokenizer.trunk.encode(current_string, add_special_tokens=False)).unsqueeze(0).to(self.device_env.device) predicted_json = token2json(current_string) if 'answer' in predicted_json: self.all_predictions.append(predicted_json['answer']) else: self.all_predictions.append('') return metrics def average_metrics(self, metrics: dict): anls = average_normalized_levenshtein_similarity(ground_truth=self.all_ground_truths, predicted_answers=self.all_predictions) return {'ANLS': anls} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_ocr.py import logging from dataclasses import dataclass, field from functools import partial from typing import Optional import torch import torchvision.transforms as transforms from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from chug.common import LoaderBundle _logger = logging.getLogger(__name__) import time @dataclass class TaskCrullerEvalOCRCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalOCR(TaskEval): def __init__(self, cfg: TaskCrullerEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_pretrain>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.eval_metrics = {} self.max_recursion_length = 1000 def time_and_log(func): def wrapper(self, *args, **kwargs): start_time = time.time() result = func(self, *args, **kwargs) end_time = time.time() execution_time = end_time - start_time _logger.info(f'Executed method {func.__name__} in {execution_time:.2f} seconds') return result return wrapper def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) def prepare_for_evaluation(self, loaders: dict[str, LoaderBundle]) -> dict[str, LoaderBundle]: loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders @time_and_log def step(self, sample): metrics = {} (image_input, text_input, text_target) = sample text_input = [item[0] for item in text_input] text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) text_target = [item[0] for item in text_target] text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) image_input = image_input.to(self.device_env.device, non_blocking=True) (ocr_metrics, _) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length, prompt_token=self.task_start_token) metrics['ocr_reconstruction'] = ocr_metrics return metrics def average_metrics(self, metrics: dict): wer_sum = 0 cer_sum = 0 for batch_metrics in metrics.values(): wer_sum += batch_metrics['ocr_reconstruction']['wer'] cer_sum += batch_metrics['ocr_reconstruction']['cer'] num_batches = len(metrics) average_wer = wer_sum / num_batches average_cer = cer_sum / num_batches return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_eval_rvlcdip.py import logging from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from typing import Optional import PIL import torch import torch.nn.functional as F from torchvision import transforms from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.framework import DeviceEnv, Monitor, TaskEval, TaskEvalCfg from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerCfg, TokenizerHF _logger = logging.getLogger(__name__) @dataclass class TaskCrullerEvalRVLCDIPCfg(TaskEvalCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerEvalRVLCDIP(TaskEval): def __init__(self, cfg: TaskCrullerEvalRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_rvlcdip>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_class>', '</s_class>', '<advertisement/>', '<budget/>', '<email/>', '<file_folder/>', '<form/>', '<handwritten/>', '<invoice/>', '<letter/>', '<memo/>', '<news_article/>', '<presentation/>', '<questionnaire/>', '<resume/>', '<scientific_publication/>', '<scientific_report/>', '<specification/>'] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_eval = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def setup(self): device = self.device_env.device self.model.load_state_dict(self.resume_state_dict) self.model.eval() self.model.to(device) def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(self.tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def safe_image_transform(self, img): try: transformed_img = self.image_preprocess_eval(img) except PIL.UnidentifiedImageError as e: print(f'Encountered PIL issue {e}. Filtering...') transformed_img = None return transformed_img def collate_fn(self, batch): images = [item['image'] for item in batch if item is not None] labels = [item['label'] for item in batch if item is not None] if len(images) == 0: return None transformed_images = [self.safe_image_transform(img) for img in images] valid_indices = [i for (i, img) in enumerate(transformed_images) if img is not None] images = torch.stack([transformed_images[i] for i in valid_indices]) labels = torch.tensor([labels[i] for i in valid_indices], dtype=torch.int64) return {'image': images, 'label': labels} def step(self, sample): metrics = {} metrics['classification'] = dict() correct_samples = 0 ground_truths = [self.int2str[int(gt)] for gt in sample['label']] already_counted = [False] * len(ground_truths) with torch.inference_mode(): tensor_images = torch.stack([im for im in sample['image']]).to(self.device_env.device) output = self.model.image_encoder(tensor_images) current_strings = ['<s_rvlcdip>' for _ in range(tensor_images.shape[0])] input_ids = torch.tensor(self.tokenizer.trunk.encode('<s_rvlcdip>')[1]).unsqueeze(0).repeat(tensor_images.shape[0], 1).to(self.device_env.device) max_steps = 5 for step in range(max_steps): inputs = self.prepare_inputs_for_inference(input_ids=input_ids, encoder_outputs=output) decoder_outputs = self.model.text_decoder(**inputs) probabilities = F.softmax(decoder_outputs['logits'], dim=-1) next_token_ids = torch.argmax(probabilities, dim=-1) for idx in range(next_token_ids.shape[0]): next_token_id = next_token_ids[idx, -1].item() next_token = self.tokenizer.trunk.decode([next_token_id]) current_strings[idx] += next_token if next_token == '</s>': generated_label = current_strings[idx].replace('<s_rvlcdip>', '').replace('</s>', '').replace('<s>', '').strip() ground_truth_label = '<' + ground_truths[idx] + '/>' if generated_label == ground_truth_label and (not already_counted[idx]): correct_samples += 1 already_counted[idx] = True input_ids = torch.tensor([self.tokenizer.trunk.encode(s)[1:] for s in current_strings]).to(self.device_env.device) metrics['classification']['correct_samples'] = correct_samples metrics['classification']['n_valid_samples'] = len(sample['label']) return metrics def average_metrics(self, metrics: dict): correct_samples = 0 total_samples = 0 for batch_metrics in metrics.values(): correct_samples += batch_metrics['classification']['correct_samples'] total_samples += batch_metrics['classification']['n_valid_samples'] average_acc = correct_samples / total_samples return {'classification': {'accuracy': average_acc}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_CORD.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torchvision.transforms import functional as transformsF from torchvision.transforms import Lambda import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict from ast import literal_eval from datasets import load_dataset from pixparse.utils.json_utils import json2token, token2json from transformers import DonutProcessor, VisionEncoderDecoderModel from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from pixparse.utils.json_utils import JSONParseEvaluator _logger = logging.getLogger(__name__) @dataclass class TaskCrullerFinetuneCORDCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' def prepare_inputs_for_inference(tokenizer, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past_key_values=None, past=None, use_cache: bool=None, attention_mask: torch.Tensor=None): if past is not None: past_key_values = past attention_mask = input_ids.ne(tokenizer.trunk.pad_token_id).long() if past_key_values is not None: input_ids = input_ids[:, -1:] output = {'input_ids': input_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'use_cache': use_cache, 'encoder_hidden_states': encoder_outputs} return output class TaskCrullerFinetuneCORD(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneCORDCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_cord>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '</s_service_price>', '<s_subtotal_price>', '<s_discountprice>', '</s_sub>', '<s_sub>', '</s_total_etc>', '</s_discountprice>', '</s_vatyn>', '</s_subtotal_price>', '<s_changeprice>', '</s_total>', '</s_unitprice>', '<s_emoneyprice>', '</s_tax_price>', '</s_othersvc_price>', '</s_cnt>', '<s_vatyn>', '<s_unitprice>', '<s_total>', '<s_price>', '</s_price>', '<s_sub_total>', '</s_num>', '<s_total_etc>', '</s_creditcardprice>', '<s_tax_price>', '<s_menu>', '<s_nm>', '<s_menutype_cnt>', '</s_changeprice>', '<s_num>', '<s_itemsubtotal>', '</s_etc>', '<s_creditcardprice>', '</s_menuqty_cnt>', '</s_emoneyprice>', '<s_menuqty_cnt>', '<s_discount_price>', '</s_menu>', '</s_sub_total>', '<s_etc>', '</s_void_menu>', '<s_cashprice>', '</s_discount_price>', '</s_total_price>', '</s_nm>', '<s_service_price>', '<s_othersvc_price>', '</s_itemsubtotal>', '<s_void_menu>', '<s_total_price>', '</s_cashprice>', '</s_menutype_cnt>', '<s_cnt>'] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) '' self.finetune_donut_weights = False _logger.info(f'Finetuning donut weights? {self.finetune_donut_weights}') if self.finetune_donut_weights: self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base') else: self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False if self.finetune_donut_weights: self.num_image_chs = 3 else: self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 if self.finetune_donut_weights: img_mean = IMAGENET_DEFAULT_MEAN img_std = IMAGENET_DEFAULT_STD else: img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std if self.finetune_donut_weights: image_size = (1280, 960) color_transform = Lambda(lambda x: x) else: image_size = cfg.model.image_encoder.image_size color_transform = transforms.Grayscale() self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): if self.finetune_donut_weights: self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.decoder.resize_token_embeddings(len(self.tokenizer.trunk)) else: _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] raw_texts = [literal_eval(item['ground_truth'])['gt_parse'] for item in batch] inputs_to_stack = [] for text in raw_texts: (tokens_from_json, _) = json2token(text, self.tokenizer.trunk.all_special_tokens, sort_json_key=False) inputs_to_stack.append(tokenizer_fn(self.task_start_token + tokens_from_json + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): if self.finetune_donut_weights: output = self.model(pixel_values=image_input, decoder_input_ids=label, labels=text_target) logits = output['logits'] else: output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % 100 == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['tokenizer'] = self.tokenizer.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_RVLCDIP.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict _logger = logging.getLogger(__name__) class GetCLSToken(nn.Module): def forward(self, x): return x[:, 0, :] @dataclass class TaskCrullerFinetuneRVLCDIPCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneRVLCDIP(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneRVLCDIPCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_rvlcdip>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_class>', '</s_class>', '<advertisement/>', '<budget/>', '<email/>', '<file_folder/>', '<form/>', '<handwritten/>', '<invoice/>', '<letter/>', '<memo/>', '<news_article/>', '<presentation/>', '<questionnaire/>', '<resume/>', '<scientific_publication/>', '<scientific_report/>', '<specification/>'] self.int2str = {0: 'letter', 1: 'form', 2: 'email', 3: 'handwritten', 4: 'advertisement', 5: 'scientific_report', 6: 'scientific_publication', 7: 'specification', 8: 'file_folder', 9: 'news_article', 10: 'budget', 11: 'invoice', 12: 'presentation', 13: 'questionnaire', 14: 'resume', 15: 'memo'} preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) target[:torch.nonzero(target == prompt_end_token_id).sum() + 1] = ignore_id return target def collate_fn(self, batch): images = [item['image'] for item in batch] labels = [item['label'] for item in batch] tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=5, padding='max_length', truncation=True).input_ids[0] labels_tokens = [tokenizer_fn(self.task_start_token + '<' + self.int2str[label] + '/>' + self.tokenizer.trunk.eos_token) for label in labels] transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) labels = torch.stack(labels_tokens) targets = torch.stack([self.text_input_to_target(text) for text in labels]) labels = labels[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': labels, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % self.eval_frequency == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() # File: pixparse-main/src/pixparse/task/task_cruller_finetune_docvqa.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from torchvision.transforms import functional as transformsF from torchvision.transforms import Lambda import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict from ast import literal_eval from datasets import load_dataset from pixparse.utils.json_utils import json2token, token2json from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from pixparse.utils.json_utils import JSONParseEvaluator import numpy as np _logger = logging.getLogger(__name__) @dataclass class TaskCrullerFinetuneDOCVQACfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneDOCVQA(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneDOCVQACfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_docvqa>' self.prompt_end_token = '<s_answer>' self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = True self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False self.special_tokens_finetune = ['<sep/>', self.task_start_token, self.prompt_end_token, '<s_question>', '</s_question>', '</s_answer>'] preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) special_tokens_from_pretrain = ['<sep/>', '<s_pretrain>'] num_tokens_from_pretrain = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens_from_pretrain))}) if num_tokens_from_pretrain > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std image_size = cfg.model.image_encoder.image_size color_transform = transforms.Grayscale() self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), color_transform, transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(self.special_tokens_finetune))}) self.vocab_size = len(self.tokenizer.trunk) if self.newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def text_input_to_target(self, text_input, ignore_id=-100): target = text_input.clone() target[target == self.tokenizer.trunk.pad_token_id] = ignore_id prompt_end_token_id = self.tokenizer.trunk.convert_tokens_to_ids(self.prompt_end_token) slice_id = torch.nonzero(target == prompt_end_token_id).sum() + 1 target[:slice_id] = ignore_id return target def collate_fn(self, batch): tokenizer_fn = lambda x: self.tokenizer.trunk(x, add_special_tokens=False, return_tensors='pt', max_length=512, padding='max_length', truncation=True).input_ids[0] images = [item['image'] for item in batch] q_and_as = [np.random.choice(item['labels']) for item in batch] inputs_to_stack = [] for text in q_and_as: inputs_to_stack.append(tokenizer_fn('<s_docvqa>' + text + self.tokenizer.trunk.eos_token)) text_inputs = torch.stack(inputs_to_stack) targets = torch.stack([self.text_input_to_target(text) for text in text_inputs]) transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) text_inputs = text_inputs[:, :-1] targets = targets[:, 1:] return {'image': images, 'label': text_inputs, 'text_target': targets} def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] text_target = sample['text_target'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) text_target = text_target.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, label) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % 100 == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['tokenizer'] = self.tokenizer.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_cruller_finetune_xent.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from timm.layers import SelectAdaptivePool2d from typing import Dict, List from collections import OrderedDict _logger = logging.getLogger(__name__) class GetCLSToken(nn.Module): def forward(self, x): return x[:, 0, :] @dataclass class TaskCrullerFinetuneXentCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerFinetuneXent(TaskTrain): def __init__(self, cfg: TaskCrullerFinetuneXentCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_finetune>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = False self.tokenizer = TokenizerHF(cfg.tokenizer) self.state_dict = OrderedDict() self.resume = False special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) def train_setup(self, num_batches_per_interval: int): if self.resume: _logger.info(f'Resuming from existing checkpoint. ') self.state_dict = {k.replace('module.', ''): v for (k, v) in self.state_dict.items()} self.model.load_state_dict(self.state_dict) self.model = nn.Sequential(OrderedDict([('encoder', self.model.image_encoder), ('token_pool', GetCLSToken()), ('final_fc', nn.Linear(768, 16))])) device = self.device_env.device print(f'Local rank for this process: {self.device_env.local_rank}') device = torch.device(f'cuda:{self.device_env.local_rank}') self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def collate_fn(self, batch): images = [item['image'] for item in batch] labels = [item['label'] for item in batch] transform = self.image_preprocess_train images = torch.stack([transform(img) for img in images]) labels = torch.tensor(labels, dtype=torch.int64) return {'image': images, 'label': labels} def train_interval_start(self): self.optimizer.zero_grad() self.interval_batch_idx = 0 def train_interval_end(self): self.monitor.log_phase('finetune', self.interval_idx) self.interval_idx += 1 def train_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: image_input = sample['image'] label = sample['label'] result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) label = label.to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): outputs = self.model(image_input) loss = self.loss(outputs, label) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if self.step % self.eval_frequency == 0: self.monitor.log_step('finetune', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=None, eval_data=None) if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() def eval_step(self, sample: Dict[str, Any]) -> Dict[str, Any]: pass def get_current_lr(self): lrl = [param_group['lr'] for param_group in self.optimizer.param_groups] lr = sum(lrl) / len(lrl) return lr # File: pixparse-main/src/pixparse/task/task_cruller_pretrain.py import logging from contextlib import nullcontext from dataclasses import dataclass, field, asdict from functools import partial from typing import Optional, List, Any import torch import torch.nn as nn import torchvision.transforms as transforms import timm import timm.utils from timm.optim import create_optimizer_v2 from timm.scheduler import create_scheduler_v2 from pixparse.framework import TaskTrainCfg, TaskTrain, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_ocr_anno, preprocess_text_anno from pixparse.utils.ocr_utils import get_ocr_metrics _logger = logging.getLogger(__name__) @dataclass class TaskCrullerPretrainCfg(TaskTrainCfg): model_name: Optional[str] = None model: ModelCfg = field(default_factory=ModelCfg) tokenizer: TokenizerCfg = field(default_factory=TokenizerCfg) def __post_init__(self): if self.model_name: model = get_model_config(self.model_name) if model is None: _logger.warning(f'Model config for {self.model_name} was not found, using defaults.') else: self.model = model else: self.model_name = 'custom' class TaskCrullerPretrain(TaskTrain): def __init__(self, cfg: TaskCrullerPretrainCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.amp_dtype = None if cfg.dtype is not None: self.amp_dtype = torch.bfloat16 if cfg.dtype in ('bfloat16', 'bf16') else torch.float16 self.task_start_token = '<s_pretrain>' self.prompt_end_token = self.task_start_token self.max_position_embeddings = cfg.model.text_decoder.max_length self.text_anno_fn = False self.tokenizer = TokenizerHF(cfg.tokenizer) special_tokens = ['<sep/>', self.task_start_token, self.prompt_end_token] newly_added_num = self.tokenizer.trunk.add_special_tokens({'additional_special_tokens': sorted(set(special_tokens))}) self.vocab_size = len(self.tokenizer.trunk) preproc_fn = preprocess_text_anno if self.text_anno_fn else preprocess_ocr_anno self.anno_preprocess_train = partial(preproc_fn, tokenizer=self.tokenizer.trunk, max_position_embeddings=self.max_position_embeddings, task_start_token=self.task_start_token, prompt_end_token=self.prompt_end_token) self.model = Cruller(cfg.model) if newly_added_num > 0: self.model.text_decoder.trunk.resize_token_embeddings(len(self.tokenizer.trunk)) self.loss = nn.CrossEntropyLoss(ignore_index=-100) self.has_no_sync = False self.num_image_chs = 1 if cfg.model.image_encoder.image_fmt == 'L' else 3 img_mean = self.model.image_encoder.trunk.pretrained_cfg['mean'] img_std = self.model.image_encoder.trunk.pretrained_cfg['std'] self.img_mean = sum(img_mean) / len(img_mean) if cfg.model.image_encoder.image_fmt == 'L' else img_mean self.img_std = sum(img_std) / len(img_std) if cfg.model.image_encoder.image_fmt == 'L' else img_std self.image_preprocess_train = transforms.Compose([transforms.ToTensor(), transforms.Resize(cfg.model.image_encoder.image_size, interpolation=transforms.InterpolationMode.BICUBIC, antialias=True), transforms.Normalize(mean=self.img_mean, std=self.img_std)]) self.image_preprocess_eval = None self.train_metrics = {} self.eval_metrics = {} self.max_recursion_length = 1000 def train_setup(self, num_batches_per_interval: int): device = self.device_env.device self.model.to(device) if self.device_env.world_size > 1: self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[device], static_graph=True) self.has_no_sync = hasattr(self.model, 'no_sync') opt_kwargs = {} if self.cfg.opt.betas is not None: opt_kwargs['betas'] = self.cfg.opt.betas if self.cfg.opt.momentum is not None: opt_kwargs['momentum'] = self.cfg.opt.momentum self.optimizer = create_optimizer_v2(self.model, self.cfg.opt.optimizer, lr=self.cfg.opt.learning_rate, eps=self.cfg.opt.eps, layer_decay=self.cfg.opt.layer_decay, **opt_kwargs) if self.cfg.amp: self.scaler = timm.utils.NativeScaler() self.autocast = partial(torch.autocast, device_type=device.type, dtype=self.amp_dtype) else: self.scaler = None self.autocast = nullcontext self.num_steps_per_interval = num_batches_per_interval // self.cfg.opt.grad_accum_steps (self.scheduler, num_scheduled_epochs) = create_scheduler_v2(self.optimizer, self.cfg.opt.scheduler, warmup_lr=self.cfg.opt.warmup_learning_rate, warmup_epochs=self.num_warmup_intervals, num_epochs=self.num_intervals, step_on_epochs=False, updates_per_epoch=self.num_steps_per_interval) self.scheduler.step_update(0) def train_interval_start(self): self.optimizer.zero_grad() self.interval_batch_idx = 0 def train_interval_end(self): self.monitor.log_phase('train', self.interval_idx) self.interval_idx += 1 def train_step(self, sample): (image_input, text_input, text_target) = sample result = {} image_input = image_input.to(self.device_env.device, non_blocking=True) text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) accum_steps = self.cfg.opt.grad_accum_steps need_update = (self.interval_batch_idx + 1) % accum_steps == 0 def _forward(): with self.autocast(): output = self.model(image_input, text_input) logits = output['logits'] loss = self.loss(logits.view(-1, self.vocab_size), text_target.view(-1)) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if self.scaler is not None: self.scaler(_loss, self.optimizer, clip_grad=self.cfg.opt.clip_grad_value, clip_mode=self.cfg.opt.clip_grad_mode, parameters=self.model.parameters(), need_update=need_update) else: _loss.backward() if need_update: if self.cfg.opt.clip_grad_value is not None: timm.utils.dispatch_clip_grad(self.model.parameters(), value=self.cfg.opt.clip_grad_value, mode=self.cfg.opt.clip_grad_mode) self.optimizer.step() if self.has_no_sync and (not need_update): with self.model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) self.batch_idx += 1 self.interval_batch_idx += 1 if not need_update: return result self.step += 1 self.scheduler.step_update(self.step) self.optimizer.zero_grad() if self.step % self.eval_frequency == 0: (metrics, eval_gallery) = self.get_train_ocr_metrics(sample) self.train_metrics |= metrics self.monitor.log_step('train', step_idx=self.step, step_end_idx=self.num_intervals * self.num_steps_per_interval, interval=self.interval_idx, loss=loss.item(), lr=self.get_current_lr(), metrics=self.train_metrics, eval_data=eval_gallery) return result def get_train_ocr_metrics(self, sample): metrics = {} eval_data = {} (image_input, text_input, text_target) = sample image_input = image_input.to(self.device_env.device, non_blocking=True) text_input = text_input[:, :-1].to(self.device_env.device, non_blocking=True) text_target = text_target[:, 1:].to(self.device_env.device, non_blocking=True) '' (ocr_metrics, ocr_reconstructed_sample) = get_ocr_metrics(model=self.model, tokenizer=self.tokenizer, image_input=image_input, text_input=text_target, device_env=self.device_env, max_recursion_length=self.max_recursion_length) if ocr_metrics and ocr_reconstructed_sample: metrics['ocr_reconstruction'] = ocr_metrics eval_data['ocr_reconstruction_data'] = ocr_reconstructed_sample else: _logger.info("Can't generate text from current batch. Skipping metrics...") return (metrics, eval_data) def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() state_dicts['optimizer'] = self.optimizer.state_dict() if hasattr(self.scheduler, 'state_dict'): state_dicts['scheduler'] = self.scheduler.state_dict() if self.scaler is not None: state_dicts['scaler'] = self.scaler.state_dict() return state_dicts def load_state_dict(self, state_dict): pass def __repr__(self): outputs = [f'model: {repr(self.model)}', f'opt: {repr(self.optimizer)}', f'sched: {repr(self.scheduler)}'] return '\n'.join(outputs) # File: pixparse-main/src/pixparse/task/task_donut_eval_ocr.py from PIL import Image import re from transformers import DonutProcessor, VisionEncoderDecoderModel import torch from dataclasses import dataclass from functools import partial from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from pixparse.utils.ocr_utils import get_cer_wer_metrics import jiwer.transforms as tr import torch import torchvision.transforms as transforms import numpy as np @dataclass class TaskDonutEvalOCRCfg(TaskEvalCfg): def __post_init__(self): pass class TaskDonutEvalOCR(TaskEval): def __init__(self, cfg: TaskDonutEvalOCRCfg, device_env: DeviceEnv, monitor: Monitor=None): super().__init__(cfg=cfg, device_env=device_env, monitor=monitor) self.cfg = cfg self.processor = DonutProcessor.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') self.model = VisionEncoderDecoderModel.from_pretrained('naver-clova-ix/donut-base-finetuned-cord-v2') self.task_prompt = '<s_cord-v2>' self.decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids self.vocab_size = len(self.processor.tokenizer) preproc_fn = preprocess_text_anno self.max_position_embeddings = 768 self.anno_preprocess_eval = partial(preproc_fn, tokenizer=self.processor.tokenizer, max_position_embeddings=self.max_position_embeddings, task_start_token='', prompt_end_token=self.task_prompt) self.model.eval() self.has_no_sync = False self.num_image_chs = 3 self.image_preprocess_eval = lambda x: x self.cer_transforms = tr.Compose([tr.RemoveSpecificWords('<pad>'), tr.Strip(), tr.ReduceToListOfListOfChars()]) self.wer_transforms = tr.Compose([tr.RemoveSpecificWords('<pad>'), tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToListOfListOfWords()]) self.eval_metrics = {} self.max_recursion_length = 1000 def setup(self): device = self.device_env.device self.model.to(device) def prepare_for_evaluation(self, loaders): loaders = {loader_key: loader for (loader_key, loader) in loaders.items() if loader_key in ['eval', 'eval_FUNSD']} return loaders def clean_text(self, text: str) -> str: sequence = text.replace(self.processor.tokenizer.eos_token, '').replace(self.processor.tokenizer.pad_token, '') cleaned_text = re.sub('<.*?>', '', sequence) return cleaned_text def step(self, sample): metrics = {} (image_input, text_input, text_target) = sample text_input = [item[0] for item in text_input] text_input = torch.stack(text_input, dim=0).to(self.device_env.device, non_blocking=True) text_target = [item[0] for item in text_target] text_target = torch.stack(text_target, dim=0).to(self.device_env.device, non_blocking=True) decoder_input_ids = self.processor.tokenizer(self.task_prompt, add_special_tokens=False, return_tensors='pt').input_ids pixel_values = self.processor([im.convert('RGB') for im in image_input], return_tensors='pt').pixel_values with torch.inference_mode(): outputs = [self.model.generate(pixel_value.unsqueeze(0).to(self.device_env.device), decoder_input_ids=decoder_input_ids.to(self.device_env.device), max_length=self.max_position_embeddings, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True) for pixel_value in pixel_values] generated_text = [self.clean_text(self.processor.decode(greedy_outputs.sequences[0])) for greedy_outputs in outputs] text_input[text_input == -100] = self.processor.tokenizer.pad_token_id raw_decoded_texts = self.processor.tokenizer.batch_decode(text_input) decoded_texts = [self.clean_text(t) for t in raw_decoded_texts] filtered = [(ref, pred) for (ref, pred) in zip(decoded_texts, generated_text) if ref and pred] if not filtered: return (None, None) (decoded_texts, ocr_predictions) = zip(*filtered) decoded_texts = list(decoded_texts) ocr_predictions = list(ocr_predictions) ocr_predictions = [text[0:len(reftext)] for (text, reftext) in zip(ocr_predictions, decoded_texts)] metrics['ocr_reconstruction'] = get_cer_wer_metrics(self.cer_transforms, self.wer_transforms, dict(), ocr_predictions, decoded_texts) return metrics def average_metrics(self, metrics: dict): wer_sum = 0 cer_sum = 0 for batch_metrics in metrics.values(): wer_sum += batch_metrics['ocr_reconstruction']['wer'] cer_sum += batch_metrics['ocr_reconstruction']['cer'] num_batches = len(metrics) average_wer = wer_sum / num_batches average_cer = cer_sum / num_batches return {'ocr_reconstruction': {'wer': average_wer, 'cer': average_cer}} def end(self): pass def state_dict(self): state_dicts = {} state_dicts['model'] = self.model.state_dict() return state_dicts # File: pixparse-main/src/pixparse/task/task_factory.py import logging from dataclasses import dataclass, field from functools import partial from typing import Optional import torch import torchvision.transforms as transforms from pixparse.framework import TaskEvalCfg, TaskEval, DeviceEnv, Monitor from pixparse.models import Cruller, ModelCfg, get_model_config from pixparse.tokenizers import TokenizerHF, TokenizerCfg from pixparse.data import preprocess_text_anno from pixparse.utils import get_ocr_metrics from pixparse.task import TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg, TaskDonutEvalOCR, TaskDonutEvalOCRCfg, TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg, TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg, TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg, TaskCrullerPretrain, TaskCrullerPretrainCfg, TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg, TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg, TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg, TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg class TaskFactory: TASK_CLASS_REGISTRY = {'cruller_eval_ocr': (TaskCrullerEvalOCR, TaskCrullerEvalOCRCfg), 'cruller_eval_rvlcdip': (TaskCrullerEvalRVLCDIP, TaskCrullerEvalRVLCDIPCfg), 'cruller_eval_cord': (TaskCrullerEvalCORD, TaskCrullerEvalCORDCfg), 'cruller_eval_docvqa': (TaskCrullerEvalDOCVQA, TaskCrullerEvalDOCVQACfg), 'donut_eval_ocr': (TaskDonutEvalOCR, TaskDonutEvalOCRCfg), 'cruller_pretrain': (TaskCrullerPretrain, TaskCrullerPretrainCfg), 'cruller_finetune_rvlcdip': (TaskCrullerFinetuneRVLCDIP, TaskCrullerFinetuneRVLCDIPCfg), 'cruller_finetune_cord': (TaskCrullerFinetuneCORD, TaskCrullerFinetuneCORDCfg), 'cruller_finetune_docvqa': (TaskCrullerFinetuneDOCVQA, TaskCrullerFinetuneDOCVQACfg), 'cruller_finetune_xent': (TaskCrullerFinetuneXent, TaskCrullerFinetuneXentCfg)} @classmethod def create_task(cls, task_name: str, task_args, device_env: DeviceEnv, monitor: Monitor): task_name = task_name.lower() if task_name not in cls.TASK_CLASS_REGISTRY: raise ValueError(f'Unknown task type: {task_name}. Available tasks are {list(cls.TASK_CLASS_REGISTRY.keys())}') task_cls = cls.TASK_CLASS_REGISTRY[task_name][0] task_cfg = cls.TASK_CLASS_REGISTRY[task_name][1] task_cfg_instance = task_cfg(**vars(task_args)) task_cls_instance = task_cls(cfg=task_cfg_instance, device_env=device_env, monitor=monitor) return (task_cls_instance, task_cfg_instance) # File: pixparse-main/src/pixparse/tokenizers/config.py import copy import re from pathlib import Path from dataclasses import dataclass, field from typing import Optional, Tuple from simple_parsing.helpers import Serializable from pixparse.utils.name_utils import _natural_key, clean_name _TOKENIZER_CONFIG_PATHS = [Path(__file__).parent / f'configs/'] _TOKENIZER_CONFIGS = {} @dataclass class TokenizerCfg(Serializable): name: str = 'facebook/bart-large' pretrained: bool = True def _scan_tokenizer_configs(): global _TOKENIZER_CONFIGS config_ext = ('.json',) config_files = [] for config_path in _TOKENIZER_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: config_files.extend(config_path.glob(f'*{ext}')) for cf in config_files: tokenizer_cfg = TokenizerCfg.load(cf) _TOKENIZER_CONFIGS[cf.stem] = tokenizer_cfg _TOKENIZER_CONFIGS = {k: v for (k, v) in sorted(_TOKENIZER_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} _scan_tokenizer_configs() def list_tokenizers(): return list(_TOKENIZER_CONFIGS.keys()) def get_tokenizer_config(tokenizer_name): tokenizer_name = clean_name(tokenizer_name) cfg = _TOKENIZER_CONFIGS.get(tokenizer_name, None) return copy.deepcopy(cfg) # File: pixparse-main/src/pixparse/tokenizers/tokenizer_hf.py from torch import nn as nn from pixparse.tokenizers.config import TokenizerCfg from transformers import AutoTokenizer def create_tokenizer(cfg: TokenizerCfg): assert cfg.name extra_kwargs = {} tokenizer = AutoTokenizer.from_pretrained(cfg.name, **extra_kwargs) return tokenizer class TokenizerHF(nn.Module): def __init__(self, cfg: TokenizerCfg): super().__init__() self.trunk = create_tokenizer(cfg) |